Skip to main content

Bioinformatics Research Based on Evolutionary Computation

  • Chapter
  • First Online:
Association Analysis Techniques and Applications in Bioinformatics
  • 47 Accesses

Abstract

Evolutionary computation-based association analysis has achieved significant progress in the field of data mining. This research approach fully leverages the advantages of evolutionary computation in global search and optimization, enhancing the efficiency and accuracy of association rule mining. The key of evolutionary computation methods lies in transforming association analysis problems into optimization problems. By doing so, the optimal association rules can be sought within the space of association rules. To achieve this objective, researchers need to define fitness functions to evaluate the quality of association rules, such as support and confidence measures. Additionally, evolutionary computation algorithms require settings for population initialization, selection, mutation, and other operations to effectively explore the search space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. PAL S K, BANDYOPADHYAY S, RAY S S. Evolutionary computation in bioinformatics: A review[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2006, 36(5): 601–615.

    Google Scholar 

  2. ALTMAN R B. Challenges for intelligent systems in biology[J]. IEEE Intelligent Systems, 2001, 16(6): 14–18.

    Article  Google Scholar 

  3. HASSANIEN A E, AL-SHAMMARI E T, GHALI N I. Computational intelligence techniques in bioinformatics[J]. Computational biology and chemistry, 2013, 47: 37–47.

    Google Scholar 

  4. LAARHOVEN P J M V, AARTS E H L. Simulated annealing[M]//Simulated annealing: Theory and applications. Springer, Dordrecht, 1987: 7–15.

    Book  Google Scholar 

  5. GLOVER F. Tabu search—part I[J]. ORSA Journal on computing, 1989, 1(3): 190–206.

    Article  MathSciNet  Google Scholar 

  6. WHITLEY D. A genetic algorithm tutorial[J]. Statistics and computing, 1994, 4(2): 65–85.

    Article  Google Scholar 

  7. KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-international conference on neural networks. IEEE, 1995, 4: 1942–1948.

    Google Scholar 

  8. DORIGO M, STÜTZLE T. Ant colony optimization: overview and recent advances[M]. Handbook of metaheuristics, 2019: 311–351.

    Google Scholar 

  9. CUI Y, GENG Z, ZHU Q, et al. Multi-objective optimization methods and application in energy saving[J]. Energy, 2017, 125: 681–704.

    Article  Google Scholar 

  10. RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232–2248.

    Article  Google Scholar 

  11. LAGUNA M. Tabu search[M]//Handbook of heuristics. Springer, Cham, 2018: 741–758.

    Google Scholar 

  12. WILSON A J, PALLAVI D R, RAMACHANDRAN M, et al. A Review On Memetic Algorithms and Its Developments[J]. Electrical and Automation Engineering, 2022, 1(1): 7–12.

    Google Scholar 

  13. KASHAN A H. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships[J]. Applied Soft Computing, 2014, 16: 171–200.

    Article  Google Scholar 

  14. BOUSSAÏD I, LEPAGNOT J, SIARRY P. A survey on optimization metaheuristics[J]. Information Sciences, 2013, 237: 82–117.

    Article  MathSciNet  Google Scholar 

  15. IQBAL S, HALIM Z. Orienting conflicted graph edges using genetic algorithms to discover pathways in protein-protein interaction networks[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 18(5): 1970–1985.

    Article  Google Scholar 

  16. AMIROCH S, PRADANA M S, IRAWAN M, et al. A simple genetic algorithm for optimizing multiple sequence alignment on the spread of the sars epidemic[J]. The Open Bioinformatics Journal, 2019, 12(1): 30–39.

    Article  Google Scholar 

  17. LIN J, CHEN H, LI S, et al. Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier[J]. Artificial intelligence in medicine, 2019, 98: 35–47.

    Google Scholar 

  18. STORN R, PRICE K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997, 11(4): 341–359.

    Article  MathSciNet  Google Scholar 

  19. RAKHSHANI H, IDOUMGHAR L, LEPAGNOT J, et al. Speed up differential evolution for computationally expensive protein structure prediction problems[J]. Swarm and Evolutionary Computation, 2019, 50: 100493.

    Article  Google Scholar 

  20. JI J, XIAO H, YANG C. HFADE-FMD: a hybrid approach of fireworks algorithm and differential evolution strategies for functional module detection in protein-protein interaction networks[J]. Applied Intelligence, 2021, 51(2): 1118–1132.

    Google Scholar 

  21. POWERS D M W. Evaluation: From Predcision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation[J]. J. Mach. Learn. Technol, 2011, 2(1): 37–63.

    MathSciNet  Google Scholar 

  22. ALATAS B, AKIN E, KARCI A. MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules[J]. Applied Soft Computing, 2008, 8(1): 646–656.

    Article  Google Scholar 

  23. DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1): 29–41.

    Google Scholar 

  24. KLEINKAUF R, HOUWAART T, BACKOFEN R, et al. antaRNA–Multi-objective inverse folding of pseudoknot RNA using ant-colony optimization[J]. BMC bioinformatics, 2015, 16(1): 1–7.

    Article  Google Scholar 

  25. ZAIDMAN D, WOLFSON H J. PinaColada: peptide–inhibitor ant colony ad-hoc design algorithm[J]. Bioinformatics, 2016, 32(15): 2289–2296.

    Article  Google Scholar 

  26. ZHAN Q, WANG N, JIN S, et al. ProbPFP: a multiple sequence alignment algorithm combining hidden Markov model optimized by particle swarm optimization with partition function[J]. BMC bioinformatics, 2019, 20(18): 1–10.

    Google Scholar 

  27. SHUCHUN Y, XIANXIANG L, XUE T, et al. Protein structure prediction based on particle swarm optimization and tabu search strategy[J]. BMC bioinformatics, 2022, 23(10): 1–10.

    Google Scholar 

  28. HAN F, TANG D, SUN Y W T, et al. A hybrid gene selection method based on gene scoring strategy and improved particle swarm optimization[J]. BMC bioinformatics, 2019, 20(8): 1–13.

    Google Scholar 

  29. HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1–3): 489–501.

    Article  Google Scholar 

  30. TROTT O, OLSON A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of computational chemistry, 2010, 31(2): 455–461.

    Article  Google Scholar 

  31. LI C, LI J, SUN J, et al. Parallel multi-swarm cooperative particle swarm optimization for protein–ligand docking and virtual screening[J]. BMC bioinformatics, 2022, 23(1): 1–17.

    Google Scholar 

  32. NG M C K, FONG S, SIU S W I. PSOVina: The hybrid particle swarm optimization algorithm for protein–ligand docking[J]. Journal of bioinformatics and computational biology, 2015, 13(03): 1541007.

    Google Scholar 

  33. ZHANG Y, LIN M, YANG Y, et al. A hybrid ensemble and evolutionary algorithm for imbalanced classification and its application on bioinformatics[J]. Computational Biology and Chemistry, 2022, 98: 107646.

    Article  Google Scholar 

  34. CORREA L D L, DORN M. A knowledge-based artificial bee colony algorithm for the 3-D protein structure prediction problem[C]//2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018: 1–8.

    Google Scholar 

  35. KARABOĞA D, ASLAN S, AKSOY A. Finding DNA Motifs with Collective Parallel Artificial Bee Colony Algorithm[C]//2018 International Conference on Artificial Intelligence and Data Processing (IDAP). IEEE, 2018: 1–7.

    Google Scholar 

  36. FERNANDO F, IRAWAN M I, FADLAN A. Bat Algorithm for Solving Molecular Docking of Alkaloid Compound SA2014 Towards Cyclin D1 Protein in Cancer[C]//Journal of Physics: Conference Series. IOP Publishing, 2019, 1366(1): 012089.

    Google Scholar 

  37. RAHMALIA D, HERLAMBANG T. Bat Algorithm application for estimating Super Pairwise Alignment parameters on similarity analysis between virus protein sequences[J]. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 2020, 6(2): 1–10.

    Google Scholar 

  38. BAHAMISH H A, AL-AIDROOS N M, BORAIK A N. Bat Algorithm for Protein Conformational Search[C]//2019 First International Conference of Intelligent Computing and Engineering (ICOICE). IEEE, 2019: 1–7.

    Google Scholar 

  39. SCHERAGA H A. Empirical Conformational Energy Program for Peptides (ECEPP)[J]. Quantum Chemistry Program Exchange, QCPE Program, 1975 (286): 1.

    Google Scholar 

  40. CHEN J, ZHANG Y, XIA J F. Pairwise Biological Network Alignment Based on Discrete Bat Algorithm[J]. Computational and Mathematical Methods in Medicine, 2021, 2021.

    Google Scholar 

  41. HAMBALI M A, OLADELE T O, ADEWOLE K S, et al. Feature selection and computational optimization in high-dimensional microarray cancer datasets via InfoGain-modified bat algorithm[J]. Multimedia Tools and Applications, 2022, 81(25): 36505–36549.

    Article  Google Scholar 

  42. SALWINSKI L, MILLER C S, SMITH A J, et al. The database of interacting proteins: 2004 update[J]. Nucleic acids research, 2004, 32(suppl_1): D449-D451.

    Google Scholar 

  43. SAID A, ABBASI R A, MAQBOOL O, et al. CC-GA: A clustering coefficient based genetic algorithm for detecting communities in social networks[J]. Applied Soft Computing, 2018, 63: 59–70.

    Article  Google Scholar 

  44. PIZZUTI C. Evolutionary computation for community detection in networks: A review[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(3): 464–483.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Guangxi Education Publishing House

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Q. (2024). Bioinformatics Research Based on Evolutionary Computation. In: Association Analysis Techniques and Applications in Bioinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-99-8251-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8251-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8250-9

  • Online ISBN: 978-981-99-8251-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics