Skip to main content

Wearable Artificial Pancreas Device Technology

  • Chapter
  • First Online:
Wearable Biosensing in Medicine and Healthcare

Abstract

This chapter covers the development of closed-loop insulin delivery systems known as artificial pancreas systems (APSs). These systems can be either electronics-based or electronics-free, and there is a continuous drive to make them both wearable and user-friendly. First, we outline the development and validation status of electronics-based APSs. Then, we summarize the growing research effort to develop electronics-free, chemically-controlled APSs, with particular emphasis on ongoing efforts to make them wearable. We also discuss current challenges, possible solutions, and future perspectives based on promising results from a recent clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cefalu, W.T., Buse, J.B., Tuomilehto, J., Fleming, G.A., Ferrannini, E., Gerstein, H.C., Bennett, P.H., Ramachandran, A., Raz, I., Rosenstock, J., Kahn, S.E.: Update and next steps for real-world translation of interventions for type 2 diabetes prevention: reflections from a diabetes care editors’ expert forum. Diabetes Care 39(7), 1186–1201 (2016). https://doi.org/10.2337/dc16-0873

    Article  Google Scholar 

  2. Ginter, E., Simko, V.: Type 2 diabetes mellitus, pandemic in 21st century. Adv. Exp. Med. Biol. 771, 42–50 (2012). https://doi.org/10.1007/978-1-4614-5441-0_6

    Article  CAS  Google Scholar 

  3. The Diabetes, C., Complications Trial Research, G.: The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia 41(4), 416–423 (1998). https://doi.org/10.1007/s001250050924

  4. Diabetes, C., Complications Trial Research, G., Nathan, D.M., Genuth, S., Lachin, J., Cleary, P., Crofford, O., Davis, M., Rand, L., Siebert, C.: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl. J. Med. 329(14), 977–986 (1993). https://doi.org/10.1056/NEJM199309303291401

  5. Ohkubo, Y., Kishikawa, H., Araki, E., Miyata, T., Isami, S., Motoyoshi, S., Kojima, Y., Furuyoshi, N., Shichiri, M.: Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28(2), 103–117 (1995). https://doi.org/10.1016/0168-8227(95)01064-k

    Article  CAS  Google Scholar 

  6. Decode Study Group, t.E.D.E.G.: Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch. Intern. Med. 161(3), 397–405 (2001). https://doi.org/10.1001/archinte.161.3.397

  7. Fleischer, J., Cichosz, S.L., Hansen, T.K.: Comment on Lachin et al. Association of glycemic variability in type 1 diabetes with progression of microvascular outcomes in the diabetes control and complications trial. Diabetes Care 40:777–783, e164 (2017). https://doi.org/10.2337/dc17-1339

  8. Kadish, A.H.: Automation control of blood sugar a servomechanism for glucose monitoring and control. T Am. Soc. Art. Int. Org. 9, 363 (1963)

    CAS  Google Scholar 

  9. Albisser, A.M., Leibel, B.S., Ewart, T.G., Davidovac, Z., Botz, C.K., Zingg, W.: An artificial endocrine pancreas. Diabetes 23(5), 389–396 (1974). https://doi.org/10.2337/diab.23.5.389

    Article  CAS  Google Scholar 

  10. Albisser, A.M., Leibel, B.S., Ewart, T.G., Davidovac, Z., Botz, C.K., Zingg, W., Schipper, H., Gander, R.: Clinical control of diabetes by the artificial pancreas. Diabetes 23(5), 397–404 (1974). https://doi.org/10.2337/diab.23.5.397

    Article  CAS  Google Scholar 

  11. Pfeiffer, E.F.: On the way to the automated (blood) glucose regulation in diabetes: the dark past, the grey present and the rosy future. In: XII Congress of the International Diabetes Federation, Madrid, 22–28 September 1985. Diabetologia 30(2), 51–65 (1987). https://doi.org/10.1007/BF00274572

  12. Alsaleh, F.M., Smith, F.J., Keady, S., Taylor, K.M.: Insulin pumps: from inception to the present and toward the future. J. Clin. Pharm. Ther. 35(2), 127–138 (2010). https://doi.org/10.1111/j.1365-2710.2009.01048.x

    Article  CAS  Google Scholar 

  13. Shichiri, M., Kawamori, R., Yamasaki, Y., Hakui, N., Abe, H.: Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet 2(8308), 1129–1131 (1982). https://doi.org/10.1016/s0140-6736(82)92788-x

    Article  CAS  Google Scholar 

  14. Shichiri, M., Kawamori, R., Hakui, N., Yamasaki, Y., Abe, H.: Closed-loop glycemic control with a wearable artificial endocrine pancreas. Variations in daily insulin requirements to glycemic response. Diabetes 33(12), 1200–1202 (1984). https://doi.org/10.2337/diab.33.12.1200

  15. Hovorka, R.: Closed-loop insulin delivery: from bench to clinical practice. Nat. Rev. Endocrinol. 7(7), 385–395 (2011). https://doi.org/10.1038/nrendo.2011.32

    Article  CAS  Google Scholar 

  16. Templer, S.: Closed-loop insulin delivery systems: past, present, and future directions. Front. Endocrinol. (Lausanne) 13, 919942 (2022). https://doi.org/10.3389/fendo.2022.919942

  17. Ware, J., Hovorka, R.: Recent advances in closed-loop insulin delivery. Metabolism 127, 154953 (2022). https://doi.org/10.1016/j.metabol.2021.154953

    Article  CAS  Google Scholar 

  18. Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H.C., Keith-Hynes, P., Anderson, S.M., Brown, S.A., Chernavvsky, D.R., Breton, M.D., Farret, A., Pelletier, M.J., Place, J., Bruttomesso, D., Del Favero, S., Visentin, R., Filippi, A., Scotton, R., Avogaro, A., Doyle, F.J., 3rd.: Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas. Diabetes Care 36(7), 1851–1858 (2013). https://doi.org/10.2337/dc12-1965

    Article  Google Scholar 

  19. Bergenstal, R.M., Garg, S., Weinzimer, S.A., Buckingham, B.A., Bode, B.W., Tamborlane, W.V., Kaufman, F.R.: Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA 316(13), 1407–1408 (2016). https://doi.org/10.1001/jama.2016.11708

    Article  Google Scholar 

  20. Agrawal, P., Welsh, J.B., Kannard, B., Askari, S., Yang, Q., Kaufman, F.R.: Usage and effectiveness of the low glucose suspend feature of the medtronic paradigm Veo insulin pump. J. Diabetes Sci. Technol. 5(5), 1137–1141 (2011). https://doi.org/10.1177/193229681100500514

    Article  Google Scholar 

  21. Bergenstal, R.M., Klonoff, D.C., Garg, S.K., Bode, B.W., Meredith, M., Slover, R.H., Ahmann, A.J., Welsh, J.B., Lee, S.W., Kaufman, F.R., Group, A.I.-H.S.: Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl. J. Med. 369(3), 224-232 (2013).https://doi.org/10.1056/NEJMoa1303576

  22. Ly, T.T., Nicholas, J.A., Retterath, A., Lim, E.M., Davis, E.A., Jones, T.W.: Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA 310(12), 1240–1247 (2013). https://doi.org/10.1001/jama.2013.277818

    Article  CAS  Google Scholar 

  23. Forlenza, G.P., Li, Z., Buckingham, B.A., Pinsker, J.E., Cengiz, E., Wadwa, R.P., Ekhlaspour, L., Church, M.M., Weinzimer, S.A., Jost, E., Marcal, T., Andre, C., Carria, L., Swanson, V., Lum, J.W., Kollman, C., Woodall, W., Beck, R.W.: Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an at-home randomized crossover study: results of the PROLOG trial. Diabetes Care 41(10), 2155–2161 (2018). https://doi.org/10.2337/dc18-0771

    Article  CAS  Google Scholar 

  24. Chen, E., King, F., Kohn, M.A., Spanakis, E.K., Breton, M., Klonoff, D.C.: A review of predictive low glucose suspend and its effectiveness in preventing nocturnal Hypoglycemia. Diabetes Technol. Ther. 21(10), 602–609 (2019). https://doi.org/10.1089/dia.2019.0119

    Article  CAS  Google Scholar 

  25. Hovorka, R., Chassin, L.J., Wilinska, M.E., Canonico, V., Akwi, J.A., Federici, M.O., Massi-Benedetti, M., Hutzli, I., Zaugg, C., Kaufmann, H., Both, M., Vering, T., Schaller, H.C., Schaupp, L., Bodenlenz, M., Pieber, T.R.: Closing the loop: the adicol experience. Diabetes Technol. Ther. 6(3), 307–318 (2004). https://doi.org/10.1089/152091504774197990

    Article  CAS  Google Scholar 

  26. Weinzimer, S.A., Steil, G.M., Swan, K.L., Dziura, J., Kurtz, N., Tamborlane, W.V.: Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5), 934–939 (2008). https://doi.org/10.2337/dc07-1967

    Article  Google Scholar 

  27. Peters, T.M., Haidar, A.: Dual-hormone artificial pancreas: benefits and limitations compared with single-hormone systems. Diabet. Med. 35(4), 450–459 (2018). https://doi.org/10.1111/dme.13581

    Article  CAS  Google Scholar 

  28. Haidar, A., Tsoukas, M.A., Bernier-Twardy, S., Yale, J.F., Rutkowski, J., Bossy, A., Pytka, E., El Fathi, A., Strauss, N., Legault, L.: A Novel dual-hormone insulin-and-Pramlintide artificial pancreas for type 1 diabetes: a randomized controlled crossover trial. Diabetes Care 43(3), 597–606 (2020). https://doi.org/10.2337/dc19-1922

    Article  CAS  Google Scholar 

  29. Ilkowitz, J.T., Katikaneni, R., Cantwell, M., Ramchandani, N., Heptulla, R.A.: Adjuvant Liraglutide and insulin versus insulin monotherapy in the closed-loop system in type 1 diabetes: a randomized open-labeled crossover design trial. J. Diabetes Sci. Technol. 10(5), 1108–1114 (2016). https://doi.org/10.1177/1932296816647976

    Article  CAS  Google Scholar 

  30. Dassau, E., Renard, E., Place, J., Farret, A., Pelletier, M.J., Lee, J., Huyett, L.M., Chakrabarty, A., Doyle, F.J., 3rd., Zisser, H.C.: Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study. Diabetes Obes. Metab. 19(12), 1698–1705 (2017). https://doi.org/10.1111/dom.12999

    Article  CAS  Google Scholar 

  31. Lal, R.A., Ekhlaspour, L., Hood, K., Buckingham, B.: Realizing a closed-loop (Artificial Pancreas) system for the treatment of type 1 diabetes. Endocr. Rev. 40(6), 1521–1546 (2019). https://doi.org/10.1210/er.2018-00174

    Article  Google Scholar 

  32. Wang, Y.Q., Fang, M.Q., Jiang, X., Bequette, B.W., Xie, H.Z.: Intensive insulin therapy for critically ill subjects based on direct data-driven model predictive control. J. Process Contr. 24(5), 493–503 (2014). https://doi.org/10.1016/j.jprocont.2013.12.012

    Article  CAS  Google Scholar 

  33. Mauseth, R., Hirsch, I.B., Bollyky, J., Kircher, R., Matheson, D., Sanda, S., Greenbaum, C.: Use of a “Fuzzy Logic” controller in a closed-loop artificial pancreas. Diabetes Technol. Ther. 15(8), 628–633 (2013). https://doi.org/10.1089/dia.2013.0036

    Article  CAS  Google Scholar 

  34. Moon, S.J., Jung, I., Park, C.Y.: Current advances of artificial pancreas systems: a comprehensive review of the clinical evidence. Diabetes Metab. J. 45(6), 813–839 (2021). https://doi.org/10.4093/dmj.2021.0177

    Article  Google Scholar 

  35. Abraham, M.B., de Bock, M., Smith, G.J., Dart, J., Fairchild, J.M., King, B.R., Ambler, G.R., Cameron, F.J., McAuley, S.A., Keech, A.C., Jenkins, A., Davis, E.A., O'Neal, D.N., Jones, T.W., Australian Juvenile Diabetes Research Fund Closed-Loop Research, g.: Effect of a hybrid closed-loop system on glycemic and psychosocial outcomes in children and adolescents with type 1 diabetes: a randomized clinical trial. JAMA Pediatr. 175(12), 1227–1235 (2021). https://doi.org/10.1001/jamapediatrics.2021.3965

  36. Collyns, O.J., Meier, R.A., Betts, Z.L., Chan, D.S.H., Frampton, C., Frewen, C.M., Hewapathirana, N.M., Jones, S.D., Roy, A., Grosman, B., Kurtz, N., Shin, J., Vigersky, R.A., Wheeler, B.J., de Bock, M.I.: Improved glycemic outcomes with medtronic MiniMed advanced hybrid closed-loop delivery: results from a randomized crossover trial comparing automated insulin delivery with predictive low glucose suspend in people with type 1 diabetes. Diabetes Care 44(4), 969–975 (2021). https://doi.org/10.2337/dc20-2250

    Article  CAS  Google Scholar 

  37. Breton, M.D., Kanapka, L.G., Beck, R.W., Ekhlaspour, L., Forlenza, G.P., Cengiz, E., Schoelwer, M., Ruedy, K.J., Jost, E., Carria, L., Emory, E., Hsu, L.J., Oliveri, M., Kollman, C.C., Dokken, B.B., Weinzimer, S.A., DeBoer, M.D., Buckingham, B.A., Chernavvsky, D., Wadwa, R.P., i, D.C.L.T.R.G.: A randomized trial of closed-loop control in children with type 1 diabetes. N Engl. J. Med. 383(9), 836–845 (2020). https://doi.org/10.1056/NEJMoa2004736

  38. Ekhlaspour, L., Schoelwer, M.J., Forlenza, G.P., Deboer, M.D., Norlander, L., Hsu, L.A., Kingman, R., Boranian, E., Berget, C., Emory, E., Buckingham, B.A., Breton, M.D., Wadwa, R.P.: Safety and performance of the Tandem t:slim X2 with Control-IQ automated insulin delivery system in toddlers and preschoolers. Diabetes Technol. Ther. 23(5), 384–391 (2021). https://doi.org/10.1089/dia.2020.0507

    Article  CAS  Google Scholar 

  39. Tauschmann, M., Thabit, H., Bally, L., Allen, J.M., Hartnell, S., Wilinska, M.E., Ruan, Y., Sibayan, J., Kollman, C., Cheng, P., Beck, R.W., Acerini, C.L., Evans, M.L., Dunger, D.B., Elleri, D., Campbell, F., Bergenstal, R.M., Criego, A., Shah, V.N., Leelarathna, L., Hovorka, R., Consortium, A.P.: Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. Lancet 392(10155), 1321–1329 (2018).https://doi.org/10.1016/S0140-6736(18)31947-0

  40. Tauschmann, M., Allen, J.M., Nagl, K., Fritsch, M., Yong, J., Metcalfe, E., Schaeffer, D., Fichelle, M., Schierloh, U., Thiele, A.G., Abt, D., Kojzar, H., Mader, J.K., Slegtenhorst, S., Barber, N., Wilinska, M.E., Boughton, C., Musolino, G., Sibayan, J., Cohen, N., Kollman, C., Hofer, S.E., Frohlich-Reiterer, E., Kapellen, T.M., Acerini, C.L., de Beaufort, C., Campbell, F., Rami-Merhar, B., Hovorka, R., Kids, A.P.C.: Home use of day-and-night hybrid closed-loop insulin delivery in very young children: a multicenter, 3-Week. Random. Trial. Diabetes Care 42(4), 594–600 (2019). https://doi.org/10.2337/dc18-1881

    Article  CAS  Google Scholar 

  41. Benhamou, P.Y., Franc, S., Reznik, Y., Thivolet, C., Schaepelynck, P., Renard, E., Guerci, B., Chaillous, L., Lukas-Croisier, C., Jeandidier, N., Hanaire, H., Borot, S., Doron, M., Jallon, P., Xhaard, I., Melki, V., Meyer, L., Delemer, B., Guillouche, M., Schoumacker-Ley, L., Farret, A., Raccah, D., Lablanche, S., Joubert, M., Penfornis, A., Charpentier, G., Investigators, D.W.T.: Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. Lancet Digit. Health 1(1), e17–e25 (2019). https://doi.org/10.1016/S2589-7500(19)30003-2

    Article  Google Scholar 

  42. Amadou, C., Franc, S., Benhamou, P.Y., Lablanche, S., Huneker, E., Charpentier, G., Penfornis, A., Diabeloop, C.: Diabeloop DBLG1 closed-loop system enables patients with type 1 diabetes to significantly improve their glycemic control in real-life situations without serious adverse events: 6-month follow-up. Diabetes Care 44(3), 844–846 (2021). https://doi.org/10.2337/dc20-1809

    Article  Google Scholar 

  43. Kariyawasam, D., Morin, C., Casteels, K., Le Tallec, C., Godot, C., Sfez, A., Garrec, N., Polak, M., Charpentier, G., Franc, S., Beltrand, J.: Diabeloop DBL4K hybrid closed loop system improves time-in-range without increasing time-in Hypoglycemia in children aged 6–12 years. Diabetes 70 (2021). https://doi.org/10.2337/db21-98-LB

  44. Miyata, T., Uragami, T., Nakamae, K.: Biomolecule-sensitive hydrogels. Adv. Drug Deliver. Rev. 54(1), 79–98 (2002). https://doi.org/10.1016/S0169-409x(01)00241-1

    Article  CAS  Google Scholar 

  45. Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliver. Rev. 53(3), 321–339 (2001). https://doi.org/10.1016/S0169-409x(01)00203-4

    Article  CAS  Google Scholar 

  46. Veiseh, O., Tang, B.C., Whitehead, K.A., Anderson, D.G., Langer, R.: Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14(1), 45–57 (2015). https://doi.org/10.1038/nrd4477

    Article  CAS  Google Scholar 

  47. Wang, J.Q., Wang, Z.J., Yu, J.C., Kahkoska, A.R., Buse, J.B., Gu, Z.: Glucose-responsive insulin and delivery systems: innovation and translation. Adv. Mater. 32(13) (2020). ARTN 1902004. https://doi.org/10.1002/adma.201902004

  48. Matsumoto, A., Chen, S.Y.: A boronate gel-based synthetic platform for closed-loop insulin delivery systems. Polym. J. 53(12), 1305–1314 (2021). https://doi.org/10.1038/s41428-021-00525-8

    Article  CAS  Google Scholar 

  49. Banach, L., Williams, G.T., Fossey, J.S.: Insulin delivery using dynamic covalent boronic acid/ester-controlled release. Adv. Ther-Germany 4(11) (2021). ARTN 2100118. https://doi.org/10.1002/adtp.202100118

  50. Matsumoto, A., Miyahara, Y.: Borono-lectin’ based engineering as a versatile platform for biomedical applications. Sci. Technol. Adv. Mater. 19(1), 18–30 (2018). https://doi.org/10.1080/14686996.2017.1411143

    Article  CAS  Google Scholar 

  51. Kropff, J., Choudhary, P., Neupane, S., Barnard, K., Bain, S.C., Kapitza, C., Forst, T., Link, M., Dehennis, A., DeVries, J.H.: Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: a 180-day, prospective, multicenter. Pivotal Trial. Diabetes Care 40(1), 63–68 (2017). https://doi.org/10.2337/dc16-1525

    Article  Google Scholar 

  52. Christiansen, M.P., Klaff, L.J., Brazg, R., Chang, A.R., Levy, C.J., Lam, D., Denham, D.S., Atiee, G., Bode, B.W., Walters, S.J., Kelley, L., Bailey, T.S.: A Prospective multicenter evaluation of the accuracy of a novel implanted continuous glucose sensor: PRECISE II. Diabetes Technol. Ther. 20(3), 197–206 (2018). https://doi.org/10.1089/dia.2017.0142

    Article  CAS  Google Scholar 

  53. Chou, D.H., Webber, M.J., Tang, B.C., Lin, A.B., Thapa, L.S., Deng, D., Truong, J.V., Cortinas, A.B., Langer, R., Anderson, D.G.: Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci. USA 112(8), 2401–2406 (2015). https://doi.org/10.1073/pnas.1424684112

    Article  CAS  Google Scholar 

  54. Kataoka, K., Miyazaki, H., Bunya, M., Okano, T., Sakurai, Y.: Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J. Am. Chem. Soc. 120(48), 12694–12695 (1998)

    Article  CAS  Google Scholar 

  55. Matsumoto, A., Kurata, T., Shiino, D., Kataoka, K.: Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety. Macromolecules 37(4), 1502–1510 (2004)

    Article  CAS  Google Scholar 

  56. Matsumoto, A., Ikeda, S., Harada, A., Kataoka, K.: Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4(5), 1410–1416 (2003)

    Article  CAS  Google Scholar 

  57. Matsumoto, A., Yoshida, R., Kataoka, K.: Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromol 5(3), 1038–1045 (2004)

    Article  CAS  Google Scholar 

  58. Matsumoto, A., Yamamoto, K., Yoshida, R., Kataoka, K., Aoyagi, T., Miyahara, Y.: A totally synthetic glucose responsive gel operating in physiological aqueous conditions. Chem. Commun. 46(13), 2203–2205 (2010)

    Article  CAS  Google Scholar 

  59. Matsumoto, A., Ishii, T., Nishida, J., Matsumoto, H., Kataoka, K., Miyahara, Y.: A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Int. Edit. 51(9), 2124–2128 (2012)

    Article  CAS  Google Scholar 

  60. Matsumoto, A., Tanaka, M., Matsumoto, H., Ochi, K., Moro-Oka, Y., Kuwata, H., Yamada, H., Shirakawa, I., Miyazawa, T., Ishii, H., Kataoka, K., Ogawa, Y., Miyahara, Y., Suganami, T.: Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 3(11), eaaq0723 (2017). https://doi.org/10.1126/sciadv.aaq0723

  61. Matsumoto, A., Kuwata, H., Kimura, S., Matsumoto, H., Ochi, K., Moro-Oka, Y., Watanabe, A., Yamada, H., Ishii, H., Miyazawa, T., Chen, S., Baba, T., Yoshida, H., Nakamura, T., Inoue, H., Ogawa, Y., Tanaka, M., Miyahara, Y., Suganami, T.: Hollow fiber-combined glucose-responsive gel technology as an in vivo electronics-free insulin delivery system. Commun. Biol. 3(1), 313 (2020). https://doi.org/10.1038/s42003-020-1026-x

    Article  CAS  Google Scholar 

  62. Zhang, Y., Yu, J., Kahkoska, A.R., Wang, J., Buse, J.B., Gu, Z.: Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 139, 51–70 (2019). https://doi.org/10.1016/j.addr.2018.12.006

    Article  CAS  Google Scholar 

  63. Pillai, O., Panchagnula, R.: Insulin therapies—past, present and future. Drug Discov. Today 6(20), 1056–1061 (2001). https://doi.org/10.1016/s1359-6446(01)01962-6

    Article  CAS  Google Scholar 

  64. Halder, J., Gupta, S., Kumari, R., Gupta, G.D., Rai, V.K.: Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery. J. Pharm. Innov. 16(3), 558–565 (2021). https://doi.org/10.1007/s12247-020-09460-2

    Article  Google Scholar 

  65. Singh, P., Carrier, A., Chen, Y., Lin, S., Wang, J., Cui, S., Zhang, X.: Polymeric microneedles for controlled transdermal drug delivery. J. Control. Release 315, 97–113 (2019). https://doi.org/10.1016/j.jconrel.2019.10.022

    Article  CAS  Google Scholar 

  66. Chen, S.Y., Matsumoto, H., Moro-oka, Y., Tanaka, M., Miyahara, Y., Suganami, T., Matsumoto, A.: Microneedle-array patch fabricated with enzyme-free polymeric components capable of on-demand insulin delivery. Adv. Funct. Mater. 29(7) (2019). ARTN 1807369. https://doi.org/10.1002/adfm.201807369

  67. Chen, S.Y., Matsumoto, H., Moro-oka, Y., Tanaka, M., Miyahara, Y., Suganami, T., Matsumoto, A.: Smart microneedle fabricated with silk fibroin combined semi interpenetrating network hydrogel for glucose-responsive insulin delivery. Acs Biomater. Sci. Eng. 5(11), 5781–5789 (2019). https://doi.org/10.1021/acsbiomaterials.9b00532

    Article  CAS  Google Scholar 

  68. Chen, S.Y., Miyazaki, T., Itoh, M., Matsumoto, H., Moro-oka, Y., Tanaka, M., Miyahara, Y., Suganami, T., Matsumoto, A.: Temperature-stable boronate gel-based microneedle technology for self-regulated insulin delivery. Acs Appl. Polym. Mater. 2(7), 2781–2790 (2020). https://doi.org/10.1021/acsapm.0c00341

    Article  CAS  Google Scholar 

  69. Chen, S.Y., Miyazaki, T., Itoh, M., Matsumoto, H., Moro-Oka, Y., Tanaka, M., Miyahara, Y., Suganami, T., Matsumoto, A.: A porous reservoir-backed boronate gel microneedle for efficient skin penetration and sustained glucose-responsive insulin delivery. Gels-Basel 8(2) (2022). ARTN 74. https://doi.org/10.3390/gels8020074

  70. Yu, J.C., Wang, J.Q., Zhang, Y.Q., Chen, G.J., Mao, W.W., Ye, Y.Q., Kahkoska, A.R., Buse, J.B., Langer, R., Gu, Z.: Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4(5), 499–506 (2020). https://doi.org/10.1038/s41551-019-0508-y

    Article  CAS  Google Scholar 

  71. Beck, R.W.: Closing in on closed-loop systems for type 2 diabetes. Nat. Med. 29(1), 33–34 (2023). https://doi.org/10.1038/s41591-022-02127-0

    Article  CAS  Google Scholar 

  72. Alfonsi, J.E., Choi, E.E.Y., Arshad, T., Sammott, S.S., Pais, V., Nguyen, C., Maguire, B.R., Stinson, J.N., Palmert, M.R.: Carbohydrate counting app using image recognition for youth with type 1 diabetes: pilot randomized control trial. JMIR Mhealth Uhealth 8(10), e22074 (2020). https://doi.org/10.2196/22074

    Article  Google Scholar 

  73. Rini, C.J., McVey, E., Sutter, D., Keith, S., Kurth, H.J., Nosek, L., Kapitza, C., Rebrin, K., Hirsch, L., Pettis, R.J.: Intradermal insulin infusion achieves faster insulin action than subcutaneous infusion for 3-day wear. Drug Deliv. Transl. Res. 5(4), 332–345 (2015). https://doi.org/10.1007/s13346-015-0239-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsumoto, A. (2024). Wearable Artificial Pancreas Device Technology. In: Mitsubayashi, K. (eds) Wearable Biosensing in Medicine and Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-99-8122-9_12

Download citation

Publish with us

Policies and ethics