Abstract
This chapter covers the development of closed-loop insulin delivery systems known as artificial pancreas systems (APSs). These systems can be either electronics-based or electronics-free, and there is a continuous drive to make them both wearable and user-friendly. First, we outline the development and validation status of electronics-based APSs. Then, we summarize the growing research effort to develop electronics-free, chemically-controlled APSs, with particular emphasis on ongoing efforts to make them wearable. We also discuss current challenges, possible solutions, and future perspectives based on promising results from a recent clinical trial.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cefalu, W.T., Buse, J.B., Tuomilehto, J., Fleming, G.A., Ferrannini, E., Gerstein, H.C., Bennett, P.H., Ramachandran, A., Raz, I., Rosenstock, J., Kahn, S.E.: Update and next steps for real-world translation of interventions for type 2 diabetes prevention: reflections from a diabetes care editors’ expert forum. Diabetes Care 39(7), 1186–1201 (2016). https://doi.org/10.2337/dc16-0873
Ginter, E., Simko, V.: Type 2 diabetes mellitus, pandemic in 21st century. Adv. Exp. Med. Biol. 771, 42–50 (2012). https://doi.org/10.1007/978-1-4614-5441-0_6
The Diabetes, C., Complications Trial Research, G.: The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia 41(4), 416–423 (1998). https://doi.org/10.1007/s001250050924
Diabetes, C., Complications Trial Research, G., Nathan, D.M., Genuth, S., Lachin, J., Cleary, P., Crofford, O., Davis, M., Rand, L., Siebert, C.: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl. J. Med. 329(14), 977–986 (1993). https://doi.org/10.1056/NEJM199309303291401
Ohkubo, Y., Kishikawa, H., Araki, E., Miyata, T., Isami, S., Motoyoshi, S., Kojima, Y., Furuyoshi, N., Shichiri, M.: Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28(2), 103–117 (1995). https://doi.org/10.1016/0168-8227(95)01064-k
Decode Study Group, t.E.D.E.G.: Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch. Intern. Med. 161(3), 397–405 (2001). https://doi.org/10.1001/archinte.161.3.397
Fleischer, J., Cichosz, S.L., Hansen, T.K.: Comment on Lachin et al. Association of glycemic variability in type 1 diabetes with progression of microvascular outcomes in the diabetes control and complications trial. Diabetes Care 40:777–783, e164 (2017). https://doi.org/10.2337/dc17-1339
Kadish, A.H.: Automation control of blood sugar a servomechanism for glucose monitoring and control. T Am. Soc. Art. Int. Org. 9, 363 (1963)
Albisser, A.M., Leibel, B.S., Ewart, T.G., Davidovac, Z., Botz, C.K., Zingg, W.: An artificial endocrine pancreas. Diabetes 23(5), 389–396 (1974). https://doi.org/10.2337/diab.23.5.389
Albisser, A.M., Leibel, B.S., Ewart, T.G., Davidovac, Z., Botz, C.K., Zingg, W., Schipper, H., Gander, R.: Clinical control of diabetes by the artificial pancreas. Diabetes 23(5), 397–404 (1974). https://doi.org/10.2337/diab.23.5.397
Pfeiffer, E.F.: On the way to the automated (blood) glucose regulation in diabetes: the dark past, the grey present and the rosy future. In: XII Congress of the International Diabetes Federation, Madrid, 22–28 September 1985. Diabetologia 30(2), 51–65 (1987). https://doi.org/10.1007/BF00274572
Alsaleh, F.M., Smith, F.J., Keady, S., Taylor, K.M.: Insulin pumps: from inception to the present and toward the future. J. Clin. Pharm. Ther. 35(2), 127–138 (2010). https://doi.org/10.1111/j.1365-2710.2009.01048.x
Shichiri, M., Kawamori, R., Yamasaki, Y., Hakui, N., Abe, H.: Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet 2(8308), 1129–1131 (1982). https://doi.org/10.1016/s0140-6736(82)92788-x
Shichiri, M., Kawamori, R., Hakui, N., Yamasaki, Y., Abe, H.: Closed-loop glycemic control with a wearable artificial endocrine pancreas. Variations in daily insulin requirements to glycemic response. Diabetes 33(12), 1200–1202 (1984). https://doi.org/10.2337/diab.33.12.1200
Hovorka, R.: Closed-loop insulin delivery: from bench to clinical practice. Nat. Rev. Endocrinol. 7(7), 385–395 (2011). https://doi.org/10.1038/nrendo.2011.32
Templer, S.: Closed-loop insulin delivery systems: past, present, and future directions. Front. Endocrinol. (Lausanne) 13, 919942 (2022). https://doi.org/10.3389/fendo.2022.919942
Ware, J., Hovorka, R.: Recent advances in closed-loop insulin delivery. Metabolism 127, 154953 (2022). https://doi.org/10.1016/j.metabol.2021.154953
Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H.C., Keith-Hynes, P., Anderson, S.M., Brown, S.A., Chernavvsky, D.R., Breton, M.D., Farret, A., Pelletier, M.J., Place, J., Bruttomesso, D., Del Favero, S., Visentin, R., Filippi, A., Scotton, R., Avogaro, A., Doyle, F.J., 3rd.: Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas. Diabetes Care 36(7), 1851–1858 (2013). https://doi.org/10.2337/dc12-1965
Bergenstal, R.M., Garg, S., Weinzimer, S.A., Buckingham, B.A., Bode, B.W., Tamborlane, W.V., Kaufman, F.R.: Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA 316(13), 1407–1408 (2016). https://doi.org/10.1001/jama.2016.11708
Agrawal, P., Welsh, J.B., Kannard, B., Askari, S., Yang, Q., Kaufman, F.R.: Usage and effectiveness of the low glucose suspend feature of the medtronic paradigm Veo insulin pump. J. Diabetes Sci. Technol. 5(5), 1137–1141 (2011). https://doi.org/10.1177/193229681100500514
Bergenstal, R.M., Klonoff, D.C., Garg, S.K., Bode, B.W., Meredith, M., Slover, R.H., Ahmann, A.J., Welsh, J.B., Lee, S.W., Kaufman, F.R., Group, A.I.-H.S.: Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl. J. Med. 369(3), 224-232 (2013).https://doi.org/10.1056/NEJMoa1303576
Ly, T.T., Nicholas, J.A., Retterath, A., Lim, E.M., Davis, E.A., Jones, T.W.: Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA 310(12), 1240–1247 (2013). https://doi.org/10.1001/jama.2013.277818
Forlenza, G.P., Li, Z., Buckingham, B.A., Pinsker, J.E., Cengiz, E., Wadwa, R.P., Ekhlaspour, L., Church, M.M., Weinzimer, S.A., Jost, E., Marcal, T., Andre, C., Carria, L., Swanson, V., Lum, J.W., Kollman, C., Woodall, W., Beck, R.W.: Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an at-home randomized crossover study: results of the PROLOG trial. Diabetes Care 41(10), 2155–2161 (2018). https://doi.org/10.2337/dc18-0771
Chen, E., King, F., Kohn, M.A., Spanakis, E.K., Breton, M., Klonoff, D.C.: A review of predictive low glucose suspend and its effectiveness in preventing nocturnal Hypoglycemia. Diabetes Technol. Ther. 21(10), 602–609 (2019). https://doi.org/10.1089/dia.2019.0119
Hovorka, R., Chassin, L.J., Wilinska, M.E., Canonico, V., Akwi, J.A., Federici, M.O., Massi-Benedetti, M., Hutzli, I., Zaugg, C., Kaufmann, H., Both, M., Vering, T., Schaller, H.C., Schaupp, L., Bodenlenz, M., Pieber, T.R.: Closing the loop: the adicol experience. Diabetes Technol. Ther. 6(3), 307–318 (2004). https://doi.org/10.1089/152091504774197990
Weinzimer, S.A., Steil, G.M., Swan, K.L., Dziura, J., Kurtz, N., Tamborlane, W.V.: Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5), 934–939 (2008). https://doi.org/10.2337/dc07-1967
Peters, T.M., Haidar, A.: Dual-hormone artificial pancreas: benefits and limitations compared with single-hormone systems. Diabet. Med. 35(4), 450–459 (2018). https://doi.org/10.1111/dme.13581
Haidar, A., Tsoukas, M.A., Bernier-Twardy, S., Yale, J.F., Rutkowski, J., Bossy, A., Pytka, E., El Fathi, A., Strauss, N., Legault, L.: A Novel dual-hormone insulin-and-Pramlintide artificial pancreas for type 1 diabetes: a randomized controlled crossover trial. Diabetes Care 43(3), 597–606 (2020). https://doi.org/10.2337/dc19-1922
Ilkowitz, J.T., Katikaneni, R., Cantwell, M., Ramchandani, N., Heptulla, R.A.: Adjuvant Liraglutide and insulin versus insulin monotherapy in the closed-loop system in type 1 diabetes: a randomized open-labeled crossover design trial. J. Diabetes Sci. Technol. 10(5), 1108–1114 (2016). https://doi.org/10.1177/1932296816647976
Dassau, E., Renard, E., Place, J., Farret, A., Pelletier, M.J., Lee, J., Huyett, L.M., Chakrabarty, A., Doyle, F.J., 3rd., Zisser, H.C.: Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study. Diabetes Obes. Metab. 19(12), 1698–1705 (2017). https://doi.org/10.1111/dom.12999
Lal, R.A., Ekhlaspour, L., Hood, K., Buckingham, B.: Realizing a closed-loop (Artificial Pancreas) system for the treatment of type 1 diabetes. Endocr. Rev. 40(6), 1521–1546 (2019). https://doi.org/10.1210/er.2018-00174
Wang, Y.Q., Fang, M.Q., Jiang, X., Bequette, B.W., Xie, H.Z.: Intensive insulin therapy for critically ill subjects based on direct data-driven model predictive control. J. Process Contr. 24(5), 493–503 (2014). https://doi.org/10.1016/j.jprocont.2013.12.012
Mauseth, R., Hirsch, I.B., Bollyky, J., Kircher, R., Matheson, D., Sanda, S., Greenbaum, C.: Use of a “Fuzzy Logic” controller in a closed-loop artificial pancreas. Diabetes Technol. Ther. 15(8), 628–633 (2013). https://doi.org/10.1089/dia.2013.0036
Moon, S.J., Jung, I., Park, C.Y.: Current advances of artificial pancreas systems: a comprehensive review of the clinical evidence. Diabetes Metab. J. 45(6), 813–839 (2021). https://doi.org/10.4093/dmj.2021.0177
Abraham, M.B., de Bock, M., Smith, G.J., Dart, J., Fairchild, J.M., King, B.R., Ambler, G.R., Cameron, F.J., McAuley, S.A., Keech, A.C., Jenkins, A., Davis, E.A., O'Neal, D.N., Jones, T.W., Australian Juvenile Diabetes Research Fund Closed-Loop Research, g.: Effect of a hybrid closed-loop system on glycemic and psychosocial outcomes in children and adolescents with type 1 diabetes: a randomized clinical trial. JAMA Pediatr. 175(12), 1227–1235 (2021). https://doi.org/10.1001/jamapediatrics.2021.3965
Collyns, O.J., Meier, R.A., Betts, Z.L., Chan, D.S.H., Frampton, C., Frewen, C.M., Hewapathirana, N.M., Jones, S.D., Roy, A., Grosman, B., Kurtz, N., Shin, J., Vigersky, R.A., Wheeler, B.J., de Bock, M.I.: Improved glycemic outcomes with medtronic MiniMed advanced hybrid closed-loop delivery: results from a randomized crossover trial comparing automated insulin delivery with predictive low glucose suspend in people with type 1 diabetes. Diabetes Care 44(4), 969–975 (2021). https://doi.org/10.2337/dc20-2250
Breton, M.D., Kanapka, L.G., Beck, R.W., Ekhlaspour, L., Forlenza, G.P., Cengiz, E., Schoelwer, M., Ruedy, K.J., Jost, E., Carria, L., Emory, E., Hsu, L.J., Oliveri, M., Kollman, C.C., Dokken, B.B., Weinzimer, S.A., DeBoer, M.D., Buckingham, B.A., Chernavvsky, D., Wadwa, R.P., i, D.C.L.T.R.G.: A randomized trial of closed-loop control in children with type 1 diabetes. N Engl. J. Med. 383(9), 836–845 (2020). https://doi.org/10.1056/NEJMoa2004736
Ekhlaspour, L., Schoelwer, M.J., Forlenza, G.P., Deboer, M.D., Norlander, L., Hsu, L.A., Kingman, R., Boranian, E., Berget, C., Emory, E., Buckingham, B.A., Breton, M.D., Wadwa, R.P.: Safety and performance of the Tandem t:slim X2 with Control-IQ automated insulin delivery system in toddlers and preschoolers. Diabetes Technol. Ther. 23(5), 384–391 (2021). https://doi.org/10.1089/dia.2020.0507
Tauschmann, M., Thabit, H., Bally, L., Allen, J.M., Hartnell, S., Wilinska, M.E., Ruan, Y., Sibayan, J., Kollman, C., Cheng, P., Beck, R.W., Acerini, C.L., Evans, M.L., Dunger, D.B., Elleri, D., Campbell, F., Bergenstal, R.M., Criego, A., Shah, V.N., Leelarathna, L., Hovorka, R., Consortium, A.P.: Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. Lancet 392(10155), 1321–1329 (2018).https://doi.org/10.1016/S0140-6736(18)31947-0
Tauschmann, M., Allen, J.M., Nagl, K., Fritsch, M., Yong, J., Metcalfe, E., Schaeffer, D., Fichelle, M., Schierloh, U., Thiele, A.G., Abt, D., Kojzar, H., Mader, J.K., Slegtenhorst, S., Barber, N., Wilinska, M.E., Boughton, C., Musolino, G., Sibayan, J., Cohen, N., Kollman, C., Hofer, S.E., Frohlich-Reiterer, E., Kapellen, T.M., Acerini, C.L., de Beaufort, C., Campbell, F., Rami-Merhar, B., Hovorka, R., Kids, A.P.C.: Home use of day-and-night hybrid closed-loop insulin delivery in very young children: a multicenter, 3-Week. Random. Trial. Diabetes Care 42(4), 594–600 (2019). https://doi.org/10.2337/dc18-1881
Benhamou, P.Y., Franc, S., Reznik, Y., Thivolet, C., Schaepelynck, P., Renard, E., Guerci, B., Chaillous, L., Lukas-Croisier, C., Jeandidier, N., Hanaire, H., Borot, S., Doron, M., Jallon, P., Xhaard, I., Melki, V., Meyer, L., Delemer, B., Guillouche, M., Schoumacker-Ley, L., Farret, A., Raccah, D., Lablanche, S., Joubert, M., Penfornis, A., Charpentier, G., Investigators, D.W.T.: Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. Lancet Digit. Health 1(1), e17–e25 (2019). https://doi.org/10.1016/S2589-7500(19)30003-2
Amadou, C., Franc, S., Benhamou, P.Y., Lablanche, S., Huneker, E., Charpentier, G., Penfornis, A., Diabeloop, C.: Diabeloop DBLG1 closed-loop system enables patients with type 1 diabetes to significantly improve their glycemic control in real-life situations without serious adverse events: 6-month follow-up. Diabetes Care 44(3), 844–846 (2021). https://doi.org/10.2337/dc20-1809
Kariyawasam, D., Morin, C., Casteels, K., Le Tallec, C., Godot, C., Sfez, A., Garrec, N., Polak, M., Charpentier, G., Franc, S., Beltrand, J.: Diabeloop DBL4K hybrid closed loop system improves time-in-range without increasing time-in Hypoglycemia in children aged 6–12 years. Diabetes 70 (2021). https://doi.org/10.2337/db21-98-LB
Miyata, T., Uragami, T., Nakamae, K.: Biomolecule-sensitive hydrogels. Adv. Drug Deliver. Rev. 54(1), 79–98 (2002). https://doi.org/10.1016/S0169-409x(01)00241-1
Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliver. Rev. 53(3), 321–339 (2001). https://doi.org/10.1016/S0169-409x(01)00203-4
Veiseh, O., Tang, B.C., Whitehead, K.A., Anderson, D.G., Langer, R.: Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14(1), 45–57 (2015). https://doi.org/10.1038/nrd4477
Wang, J.Q., Wang, Z.J., Yu, J.C., Kahkoska, A.R., Buse, J.B., Gu, Z.: Glucose-responsive insulin and delivery systems: innovation and translation. Adv. Mater. 32(13) (2020). ARTN 1902004. https://doi.org/10.1002/adma.201902004
Matsumoto, A., Chen, S.Y.: A boronate gel-based synthetic platform for closed-loop insulin delivery systems. Polym. J. 53(12), 1305–1314 (2021). https://doi.org/10.1038/s41428-021-00525-8
Banach, L., Williams, G.T., Fossey, J.S.: Insulin delivery using dynamic covalent boronic acid/ester-controlled release. Adv. Ther-Germany 4(11) (2021). ARTN 2100118. https://doi.org/10.1002/adtp.202100118
Matsumoto, A., Miyahara, Y.: Borono-lectin’ based engineering as a versatile platform for biomedical applications. Sci. Technol. Adv. Mater. 19(1), 18–30 (2018). https://doi.org/10.1080/14686996.2017.1411143
Kropff, J., Choudhary, P., Neupane, S., Barnard, K., Bain, S.C., Kapitza, C., Forst, T., Link, M., Dehennis, A., DeVries, J.H.: Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: a 180-day, prospective, multicenter. Pivotal Trial. Diabetes Care 40(1), 63–68 (2017). https://doi.org/10.2337/dc16-1525
Christiansen, M.P., Klaff, L.J., Brazg, R., Chang, A.R., Levy, C.J., Lam, D., Denham, D.S., Atiee, G., Bode, B.W., Walters, S.J., Kelley, L., Bailey, T.S.: A Prospective multicenter evaluation of the accuracy of a novel implanted continuous glucose sensor: PRECISE II. Diabetes Technol. Ther. 20(3), 197–206 (2018). https://doi.org/10.1089/dia.2017.0142
Chou, D.H., Webber, M.J., Tang, B.C., Lin, A.B., Thapa, L.S., Deng, D., Truong, J.V., Cortinas, A.B., Langer, R., Anderson, D.G.: Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci. USA 112(8), 2401–2406 (2015). https://doi.org/10.1073/pnas.1424684112
Kataoka, K., Miyazaki, H., Bunya, M., Okano, T., Sakurai, Y.: Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J. Am. Chem. Soc. 120(48), 12694–12695 (1998)
Matsumoto, A., Kurata, T., Shiino, D., Kataoka, K.: Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety. Macromolecules 37(4), 1502–1510 (2004)
Matsumoto, A., Ikeda, S., Harada, A., Kataoka, K.: Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4(5), 1410–1416 (2003)
Matsumoto, A., Yoshida, R., Kataoka, K.: Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromol 5(3), 1038–1045 (2004)
Matsumoto, A., Yamamoto, K., Yoshida, R., Kataoka, K., Aoyagi, T., Miyahara, Y.: A totally synthetic glucose responsive gel operating in physiological aqueous conditions. Chem. Commun. 46(13), 2203–2205 (2010)
Matsumoto, A., Ishii, T., Nishida, J., Matsumoto, H., Kataoka, K., Miyahara, Y.: A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Int. Edit. 51(9), 2124–2128 (2012)
Matsumoto, A., Tanaka, M., Matsumoto, H., Ochi, K., Moro-Oka, Y., Kuwata, H., Yamada, H., Shirakawa, I., Miyazawa, T., Ishii, H., Kataoka, K., Ogawa, Y., Miyahara, Y., Suganami, T.: Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 3(11), eaaq0723 (2017). https://doi.org/10.1126/sciadv.aaq0723
Matsumoto, A., Kuwata, H., Kimura, S., Matsumoto, H., Ochi, K., Moro-Oka, Y., Watanabe, A., Yamada, H., Ishii, H., Miyazawa, T., Chen, S., Baba, T., Yoshida, H., Nakamura, T., Inoue, H., Ogawa, Y., Tanaka, M., Miyahara, Y., Suganami, T.: Hollow fiber-combined glucose-responsive gel technology as an in vivo electronics-free insulin delivery system. Commun. Biol. 3(1), 313 (2020). https://doi.org/10.1038/s42003-020-1026-x
Zhang, Y., Yu, J., Kahkoska, A.R., Wang, J., Buse, J.B., Gu, Z.: Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 139, 51–70 (2019). https://doi.org/10.1016/j.addr.2018.12.006
Pillai, O., Panchagnula, R.: Insulin therapies—past, present and future. Drug Discov. Today 6(20), 1056–1061 (2001). https://doi.org/10.1016/s1359-6446(01)01962-6
Halder, J., Gupta, S., Kumari, R., Gupta, G.D., Rai, V.K.: Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery. J. Pharm. Innov. 16(3), 558–565 (2021). https://doi.org/10.1007/s12247-020-09460-2
Singh, P., Carrier, A., Chen, Y., Lin, S., Wang, J., Cui, S., Zhang, X.: Polymeric microneedles for controlled transdermal drug delivery. J. Control. Release 315, 97–113 (2019). https://doi.org/10.1016/j.jconrel.2019.10.022
Chen, S.Y., Matsumoto, H., Moro-oka, Y., Tanaka, M., Miyahara, Y., Suganami, T., Matsumoto, A.: Microneedle-array patch fabricated with enzyme-free polymeric components capable of on-demand insulin delivery. Adv. Funct. Mater. 29(7) (2019). ARTN 1807369. https://doi.org/10.1002/adfm.201807369
Chen, S.Y., Matsumoto, H., Moro-oka, Y., Tanaka, M., Miyahara, Y., Suganami, T., Matsumoto, A.: Smart microneedle fabricated with silk fibroin combined semi interpenetrating network hydrogel for glucose-responsive insulin delivery. Acs Biomater. Sci. Eng. 5(11), 5781–5789 (2019). https://doi.org/10.1021/acsbiomaterials.9b00532
Chen, S.Y., Miyazaki, T., Itoh, M., Matsumoto, H., Moro-oka, Y., Tanaka, M., Miyahara, Y., Suganami, T., Matsumoto, A.: Temperature-stable boronate gel-based microneedle technology for self-regulated insulin delivery. Acs Appl. Polym. Mater. 2(7), 2781–2790 (2020). https://doi.org/10.1021/acsapm.0c00341
Chen, S.Y., Miyazaki, T., Itoh, M., Matsumoto, H., Moro-Oka, Y., Tanaka, M., Miyahara, Y., Suganami, T., Matsumoto, A.: A porous reservoir-backed boronate gel microneedle for efficient skin penetration and sustained glucose-responsive insulin delivery. Gels-Basel 8(2) (2022). ARTN 74. https://doi.org/10.3390/gels8020074
Yu, J.C., Wang, J.Q., Zhang, Y.Q., Chen, G.J., Mao, W.W., Ye, Y.Q., Kahkoska, A.R., Buse, J.B., Langer, R., Gu, Z.: Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4(5), 499–506 (2020). https://doi.org/10.1038/s41551-019-0508-y
Beck, R.W.: Closing in on closed-loop systems for type 2 diabetes. Nat. Med. 29(1), 33–34 (2023). https://doi.org/10.1038/s41591-022-02127-0
Alfonsi, J.E., Choi, E.E.Y., Arshad, T., Sammott, S.S., Pais, V., Nguyen, C., Maguire, B.R., Stinson, J.N., Palmert, M.R.: Carbohydrate counting app using image recognition for youth with type 1 diabetes: pilot randomized control trial. JMIR Mhealth Uhealth 8(10), e22074 (2020). https://doi.org/10.2196/22074
Rini, C.J., McVey, E., Sutter, D., Keith, S., Kurth, H.J., Nosek, L., Kapitza, C., Rebrin, K., Hirsch, L., Pettis, R.J.: Intradermal insulin infusion achieves faster insulin action than subcutaneous infusion for 3-day wear. Drug Deliv. Transl. Res. 5(4), 332–345 (2015). https://doi.org/10.1007/s13346-015-0239-x
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Matsumoto, A. (2024). Wearable Artificial Pancreas Device Technology. In: Mitsubayashi, K. (eds) Wearable Biosensing in Medicine and Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-99-8122-9_12
Download citation
DOI: https://doi.org/10.1007/978-981-99-8122-9_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8121-2
Online ISBN: 978-981-99-8122-9
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)