Skip to main content

Cross-Modal Method Based on Self-Attention Neural Networks for Drug-Target Prediction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14450))

Included in the following conference series:

  • 587 Accesses

Abstract

Prediction of drug-target interactions (DTIs) plays a crucial role in drug retargeting, which can save costs and shorten time for drug development. However, existing methods are still unable to integrate the multimodal features of existing DTI datasets. In this work, we propose a new multi-head-based self-attention neural network approach, called SANN-DTI, for dti prediction. Specifically, entity embeddings in the knowledge graph are learned using DistMult, then this information is interacted with traditional drug and protein representations via multi-head self-attention neural networks, and finally DTIs is computed using fully connected neural networks for interaction features. SANN-DTI was evaluated in three scenarios across two baseline datasets. After ten fold cross-validation, our model outperforms the most advanced methods. In addition, SANN-DT has been applied to drug retargeting of breast cancer via HRBB2 targets. It was found that four of the top ten recommended drugs have been supported by the literature. Ligand-target docking results showed that the second-ranked drug in the recommended list had a clear affinity with HRBB2, which provides a promising approach for better understanding drug mode of action and drug repositioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parvathaneni, V., Kulkarni, N.S., Muth, A., Gupta, V.: Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today 24(10):2076–2085 (2019)

    Google Scholar 

  2. Pushpakom, S., et al.: Drug repurposing: progress, challenges and recommendations. Nature Rev. Drug Discov. 18(1):41–58 (2019)

    Google Scholar 

  3. Pan, X., et al.: Deep learning for drug repurposing: methods, databases, and applications. Wiley Interdiscip. Rev.: Comput. Molecular Sci. 12(4), e1597 (2022)

    Google Scholar 

  4. Luo, H., Li, M., Yang, M., Fang-Xiang, W., Li, Y., Wang, J.: Biomedical data and computational models for drug repositioning: a comprehensive review. Brief. Bioinform. 22(2), 1604–1619 (2021)

    Article  Google Scholar 

  5. Carracedo-Reboredo, P., et al.: A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 19 4538–4558 (2021)

    Google Scholar 

  6. Bagherian, M., Sabeti, E., Wang, K., Sartor, M.A., Nikolovska-Coleska, Z., Najarian, K.: Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief. Bioinform. 22(1), 247–269 (2021)

    Google Scholar 

  7. Ezzat, A., Min, W., Li, X.-L., Kwoh, C.-K.: Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Brief. Bioinform. 20(4), 1337–1357 (2019)

    Article  Google Scholar 

  8. Jacob, L., Vert, J.P.: Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19), 2149–2156 (2008)

    Google Scholar 

  9. Zheng, L., Fan, J., Yuguang, M.: Onionnet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction. ACS Omega 4(14), 15956–15965 (2019)

    Article  Google Scholar 

  10. Öztürk, H., Özgür, A., Ozkirimli, E.: Deepdta: deep drug-target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018)

    Article  Google Scholar 

  11. Luo, Y., et al.: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8(1), 573 (2017)

    Article  Google Scholar 

  12. Thafar, M.A., et al.: DTiGEMs+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques. J. Cheminform. 12(1), 1–17 (2020)

    Google Scholar 

  13. Gao, Z., Ding, P., Rong, X.: Kg-predict: a knowledge graph computational framework for drug repurposing. J. Biomed. Inform. 132, 104133 (2022)

    Article  Google Scholar 

  14. Mohamed, S.K., Nounu, A., Nováček, V.: Biological applications of knowledge graph embedding models. Brief. Bioinform. 22(2), 1679–1693 (2021)

    Google Scholar 

  15. Zhang, R., Hristovski, D., Schutte, D., Kastrin, A., Fiszman, M., Kilicoglu, H.: Drug repurposing for Covid-19 via knowledge graph completion. J. Biomed. Inform. 115, 103696 (2021)

    Article  Google Scholar 

  16. Mohamed, S.K., Nounu, A., Nováček, V.: Discovering protein drug targets using knowledge graph embeddings. Bioinformatics 36(2), 603–610 (2020)

    Google Scholar 

  17. Ye, Q., et al.: A unified drug-target interaction prediction framework based on knowledge graph and recommendation system. Nat. Commun. 12(1), 6775 (2021)

    Article  Google Scholar 

  18. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  Google Scholar 

  19. Walsh, B., Mohamed, S.K., Nováček, V.: Biokg: a knowledge graph for relational learning on biological data. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 3173–3180 (2020)

    Google Scholar 

  20. Wishart, D.S., et al.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(suppl_1), D901–D906 (2008)

    Google Scholar 

  21. Kanehisa, M., et al.: From genomics to chemical genomics: new developments in kegg. Nucleic Acids Res. 34(suppl_1), D354–D357 (2006)

    Google Scholar 

  22. Schomburg, I., et al.: Brenda, the enzyme database: updates and major new developments. Nucleic Acids Res. 32(suppl_1), D431–D433 (2004)

    Google Scholar 

  23. Günther, S., et al.: Supertarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36(suppl_1), D919–D922 (2007)

    Google Scholar 

  24. Landrum, G., et al.: Rdkit: open-source cheminformatics software. https://www.rdkit.org/, https://github.com/rdkit/rdkit149(150), 650 (2016)

  25. Dubchak, I., Muchnik, I., Holbrook, S.R., Kim, S.H.: Prediction of protein folding class using global description of amino acid sequence. Proc. National Acad. Sci. 92(19), 8700–8704 (1995)

    Google Scholar 

  26. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  27. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev.: Comput. Stat. 2(4), 433–459 (2010)

    Google Scholar 

  28. Ashish V., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, 30 (2017)

    Google Scholar 

  29. Kawasaki, Y., et al.: Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain. Sci. Reports 6(1), 1–9 (2016)

    Google Scholar 

  30. Borges, V.F., et al.: Tucatinib combined with ado-trastuzumab emtansine in advanced erbb2/her2-positive metastatic breast cancer: a phase 1b clinical trial. JAMA Oncol. 4(9), 1214–1220 (2018)

    Google Scholar 

  31. Kundumani-Sridharan, V., Subramani, J., Owens, C., Das, K.C.: Nrg1\(\beta \) released in remote ischemic preconditioning improves myocardial perfusion and decreases ischemia/reperfusion injury via erbb2-mediated rescue of endothelial nitric oxide synthase and abrogation of trx2 autophagy. Arteriosclerosis, Thromb., Vasc. Biol. 41(8), 2293–2314 (2021)

    Google Scholar 

  32. Llombart-Cussac, A., et al.: Fulvestrant-palbociclib vs letrozole-palbociclib as initial therapy for endocrine-sensitive, hormone receptor-positive, ErbB2-negative advanced breast cancer: a randomized clinical trial. JAMA Oncol. 7(12), 1791–1799 (2021)

    Google Scholar 

  33. Trott, O., Olson, A.J.: Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461, (2010)

    Google Scholar 

Download references

Acknowledgements

This study is supported by the Sichuan Science and Technology Program (NO.2021YFG0031, 22YSZH0021) and Advanced Jet Propulsion Creativity Center (Projects HKCX2022-01-022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Yang, C., He, C., Zhang, H. (2024). Cross-Modal Method Based on Self-Attention Neural Networks for Drug-Target Prediction. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8070-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8069-7

  • Online ISBN: 978-981-99-8070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics