Skip to main content

Cancellable Iris Recognition Scheme Based on Inversion Fusion and Local Ranking

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

Abstract

Iris recognition has gained significant attention and application in real-life and financial scenarios in recent years due to its importance as a biometric data source. While many proposed solutions boast high recognition accuracy, one major concern remains the effective protection of users’ iris data and prevention of privacy breaches. To address this issue, we propose an improved cancellable biometrics scheme based on the inversion fusion and local ranking strategy (IFCB), specifically targeting the vulnerability of the local ranking-based cancellable biometrics scheme (LRCB) to the ranking-inversion attack when recognition accuracy is high. The proposed method disrupts the original iris data by applying a random substitution string and rearranging blocks within each iris string. For every rearranged block, it is either inverted or kept unchanged. This combination of inversed and unchanged blocks, referred as inversion fusion, is then sorted to obtain rank values that are stored for subsequent matching. It is important to note that the inversion fusion step may lead to a loss of accuracy, which can be compensated by amplifying the iris data to improve accuracy. By utilizing a set of different random substitution strings, the rearranged iris strings are employed in both the inversion fusion and local ranking steps. A long iris template is generated and stored as the final protected iris template, forming the basis of the proposed IFCB method. Theoretical and experimental analyses demonstrate that the IFCB scheme effectively withstands rank-inversion attacks and achieves a favorable balance of accuracy, irreversibility, unlinkability, and revocability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Secretary, I.: Information technology-security techniques-biometric information protection. International Organization for Standardization, Standard ISO/IEC 24745, 2011 (2011)

    Google Scholar 

  2. Patel, V.M., Ratha, N.K., Chellappa, R.: Cancelable biometrics: a review. IEEE Signal Process. Mag. 32(5), 54–65 (2015)

    Article  Google Scholar 

  3. Rathgeb, C., Uhl, A.: A survey on biometric cryptosystems and cancelable biometrics. EURASIP J. Inf. Secur. 2011(1), 1–25 (2011)

    Google Scholar 

  4. Nandakumar, K., Jain, A.K.: Biometric template protection: bridging the performance gap between theory and practice. IEEE Signal Process. Mag. 32(5), 88–100 (2015)

    Article  Google Scholar 

  5. Natgunanathan, I., Mehmood, A., Xiang, Y., Beliakov, G., Yearwood, J.: Protection of privacy in biometric data. IEEE Access 4, 880–892 (2016)

    Article  Google Scholar 

  6. Lee, M.J., Jin, Z., Liang, S.N., Tistarelli, M.: Alignment-robust cancelable biometric scheme for iris verification. IEEE Trans. Inf. Forensics Secur. 17, 3449–3464 (2022)

    Article  Google Scholar 

  7. Zhao, D., Fang, S., Xiang, J., Tian, J., Xiong, S.: Iris template protection based on local ranking. Secur. Commun. Netw. 2018, 1–9 (2018)

    Google Scholar 

  8. Ouda, O.: On the practicality of local ranking-based cancelable iris recognition. IEEE Access 9, 86392–86403 (2021)

    Article  Google Scholar 

  9. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proceedings of the 6th ACM Conference on Computer and Communications Security, pp. 28–36 (1999)

    Google Scholar 

  10. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38, 237–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  12. Rathgeb, C., Breitinger, F., Busch, C.: Alignment-free cancelable iris biometric templates based on adaptive bloom filters. In: 2013 international Conference on Biometrics (ICB), pp. 1–8. IEEE (2013)

    Google Scholar 

  13. Jin, Z., Hwang, J.Y., Lai, Y.L., Kim, S., Teoh, A.B.J.: Ranking-based locality sensitive hashing-enabled cancelable biometrics: index-of-max hashing. IEEE Trans. Inf. Forensics Secur. 13(2), 393–407 (2017)

    Article  Google Scholar 

  14. Lai, Y.L., et al.: Cancellable iris template generation based on indexing-first-one hashing. Pattern Recogn. 64, 105–117 (2017)

    Article  Google Scholar 

  15. Sadhya, D., Raman, B.: Generation of cancelable iris templates via randomized bit sampling. IEEE Trans. Inf. Forensics Secur. 14(11), 2972–2986 (2019)

    Article  Google Scholar 

  16. Ouda, O., Tsumura, N., Nakaguchi, T.: Tokenless cancelable biometrics scheme for protecting iris codes. In: 2010 20th International Conference on Pattern Recognition, pp. 882–885. IEEE (2010)

    Google Scholar 

  17. Ouda, O., Tsumura, N., Nakaguchi, T.: Bioencoding: a reliable tokenless cancelable biometrics scheme for protecting iriscodes. IEICE Trans. Inf. Syst. 93(7), 1878–1888 (2010)

    Article  Google Scholar 

  18. Dwivedi, R., Dey, S., Singh, R., Prasad, A.: A privacy-preserving cancelable iris template generation scheme using decimal encoding and look-up table mapping. Comput. Secur. 65, 373–386 (2017)

    Article  Google Scholar 

  19. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively. IEEE Trans. Comput. 55(9), 1081–1088 (2006)

    Article  Google Scholar 

  20. Kanade, S., Petrovska-Delacr’etaz, D., Dorizzi, B.: Cancelable iris biometrics and using error correcting codes to reduce variability in biometric data. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 120–127. IEEE (2009)

    Google Scholar 

  21. Kelkboom, E.J., Breebaart, J., Kevenaar, T.A., Buhan, I., Veldhuis, R.N.: Preventing the decodability attack based cross-matching in a fuzzy commitment scheme. IEEE Trans. Inf. Forensics Secur. 6(1), 107–121 (2010)

    Article  Google Scholar 

  22. Scheirer, W.J., Boult, T.E.: Cracking fuzzy vaults and biometric encryption. In: 2007 Biometrics Symposium, pp. 1–6. IEEE (2007)

    Google Scholar 

  23. Poon, H.T., Miri, A.: A collusion attack on the fuzzy vault scheme. ISC Int. J. Inf. Secur. 1(1), 27–34 (2009)

    Google Scholar 

  24. Bringer, J., Chabanne, H., Cohen, G., Kindarji, B., Zemor, G.: Theoretical and practical boundaries of binary secure sketches. IEEE Trans. Inf. Forensics Secur. 3(4), 673–683 (2008)

    Article  Google Scholar 

  25. Blanton, M., Aliasgari, M.: Analysis of reusability of secure sketches and fuzzy extractors. IEEE Trans. Inf. Forensics Secur. 8(9), 1433–1445 (2013)

    Article  Google Scholar 

  26. Hermans, J., Mennink, B., Peeters, R.: When a bloom filter is a doom filter: security assessment of a novel iris biometric template protection system. In: 2014 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–6. IEEE (2014)

    Google Scholar 

  27. Yang, W., Wang, S., Shahzad, M., Zhou, W.: A cancelable biometric authentication system based on feature-adaptive random projection. J. Inf. Secur. Appl. 58, 102704 (2021)

    Google Scholar 

  28. Zuo, J., Ratha, N.K., Connell, J.H.: Cancelable iris biometric. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

    Google Scholar 

  29. Lacharme, P.: Analysis of the iriscodes bioencoding scheme. Int. J. Comput. Sci. Softw. Eng. (IJCSSE 2012) 6(5), 315–321 (2012)

    Google Scholar 

  30. Evans, D.L., Leemis, L.M., Drew, J.H.: The distribution of order statistics for discrete random variables with applications to bootstrapping. INFORMS J. Comput. 18(1), 19–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gomez-Barrero, M., Galbally, J., Rathgeb, C., Busch, C.: General framework to evaluate unlinkability in biometric template protection systems. IEEE Trans. Inf. Forensics Secur. 13(6), 1406–1420 (2017)

    Article  Google Scholar 

  32. Institute of Automation, C.A.o.S.: CASIA iris image database (2017)

    Google Scholar 

  33. Rathgeb, C., Uhl, A., Wild, P.: Iris Biometrics: From Segmentation to Template Security, vol. 59. Springer, Cham (2012). https://doi.org/10.1007/978-1-4614-5571-4

    Book  Google Scholar 

  34. Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Process. 13(6), 739–750 (2004)

    Article  Google Scholar 

  35. Ajish, S., AnilKumar, K.: Iris template protection using double bloom filter based feature transformation. Comput. Secur. 97, 101985 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61806151), the Natural Science Foundation of Chongqing City (Grant No. CSTC2021JCYJ-MSXMX0002), and the National Key Research and Development Program (Grant No. 2022YFC3321102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, D., Cheng, W., Zhou, J., Wang, H., Li, H. (2024). Cancellable Iris Recognition Scheme Based on Inversion Fusion and Local Ranking. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics