Skip to main content

Contemporary Use of Sensors for Soil Qualitative and Quantitative Assessment in the Context of Climate Change

  • Chapter
  • First Online:
Climate Change Impacts on Soil-Plant-Atmosphere Continuum

Part of the book series: Advances in Global Change Research ((AGLO,volume 78))

  • 132 Accesses

Abstract

There are ample opportunities to use newly introduced several low-cost digital sensing devices and technologies in soil testing and resource management services. These advanced sensors may help judicious fertilizer recommendations for nutrient-exhaustive cropping systems in different countries. It would be more convenient for the analyst, users, and government to capture the process and disseminate the required data or decisions in a time-saving manner. Farmers can get soil test reports from the laboratory in a short time. These efforts would encourage farmers of remote areas to test soil, particularly in tropical countries with more prevalent nutrient loss. This chapter discusses some low-cost proximal soil sensing devices like portable X-ray fluorescence spectrometer, color sensors, smartphone-based sensors, their operational theory, and contemporary uses with artificial intelligence (AI) and digital soil mapping techniques in soil characterization and mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldabaa, A. A. A., Weindorf, D. C., Chakraborty, S., & Sharma, A. (2015). Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma, 239–240, 34–46.

    Article  Google Scholar 

  • Almekinders, C. J., Fresco, L. O., & Struik, P. C. (1995). The need to study and manage variation in agro-ecosystems. Netherlands Journal of Agricultural Science, 43(2), 127–142.

    Article  Google Scholar 

  • Andrade, R., Faria, W. M., Silva, S. H. G., Chakraborty, S., Weindorf, D. C., Mesquita, L. F., & Curi, N. (2020). Prediction of soil fertility via portable X-ray fluorescence (PXRF) spectrometry and soil texture in the Brazilian Coastal Plains. Geoderma, 357, 113960.

    Article  CAS  Google Scholar 

  • Barouchas, P. E., & Moustakas, N. K. (2004). Soil colour and spectral analysis employing linear regression models. I. Effect of organic matter. International Agrophysics, 18(1), 118–124.

    Google Scholar 

  • Batterman, S. A., Wurzburger, N., & Hedin, L. O. (2013). Nitrogen and phosphorus interact to control tropical symbiotic N 2 fixation: A test in Inga punctata. Journal of Ecology, 101(6), 1400–1408.

    Article  CAS  Google Scholar 

  • Benedet, L., Acuña-Guzman, S. F., Faria, W. M., Silva, S. H. G., Mancini, M., dos Teixeira, A. F. S., Pierangeli, L. M. P., Acerbi, F. W., Jr., Gomide, L. R., & Pádua, A. L., Jr. (2021). Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms. CATENA, 197, 105003.

    Article  CAS  Google Scholar 

  • Blavet, D., Mathe, E., & Leprun, J. C. (2000). Relations between soil colour and waterlogging duration in a representative hillside of the West African granito-gneissic bedrock. CATENA, 39(3), 187–210.

    Article  Google Scholar 

  • Brady, N. C., Weil, R. R., & Weil, R. R. (2008). The nature and properties of soils (Vol. 13, pp. 662–710). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Campbell, E. R., Warsko, K., Davidson, A. M., & Campbell, W. H. B. (2015). Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method. MethodsX, 2, 211–218.

    Article  Google Scholar 

  • Campos, R. C., & Demattê, J. A. M. (2004). Soil color: Approach to a conventional assessment method in comparison to an automatization process for soil classification. Revista Brasileira De Ciência Do Solo, 28, 853–863.

    Article  Google Scholar 

  • Capitán-Vallvey, L. F., Lopez-Ruiz, N., Martinez-Olmos, A., Erenas, M. M., & Palma, A. J. (2015). Recent developments in computer vision-based analytical chemistry: A tutorial review. Analytica Chimica Acta, 899, 23–56.

    Article  Google Scholar 

  • Cardelli, V., Weindorf, D. C., Chakraborty, S., Li, B., De Feudis, M., Cocco, S., Agnelli, A., Choudhury, A., Ray, D. P., & Corti, G. (2017). Non-saturated soil organic horizon characterization via advanced proximal sensors. Geoderma, 288, 130–142.

    Article  CAS  Google Scholar 

  • Carré, F., McBratney, A. B., Mayr, T., & Montanarella, L. (2007). Digital soil assessments: Beyond DSM. Geoderma, 142(1–2), 69–79.

    Article  Google Scholar 

  • Chakraborty, S., Li, B., Weindorf, D. C., Deb, S., Acree, A., De, P., & Panda, P. (2019). Use of portable X-ray fluorescence spectrometry for classifying soils from different land use land cover systems in India. Geoderma, 338, 5–13.

    Article  CAS  Google Scholar 

  • Chakraborty, S., Weindorf, D. C., Weindorf, C. A., Das, B. S., Li, B., Duda, B., Pennington, S., & Ortiz, R. (2017). Semiquantitative evaluation of secondary carbonates via portable X-ray fluorescence spectrometry. Soil Science Society of America Journal, 81(4), 844–852.

    Article  CAS  Google Scholar 

  • Cozzolino, D. (2016). Near infrared spectroscopy as a tool to monitor contaminants in soil, sediments and water—State of the art, advantages and pitfalls. Trends in Environmental Analytical Chemistry, 9, 1–7.

    Article  CAS  Google Scholar 

  • Das, P., Chetry, B., Paul, S., Bhattacharya, S. S., & Nath, P. (2022). Detection and quantification of phosphate in water and soil using a smartphone. Microchemical Journal, 172, 106949.

    Google Scholar 

  • Dasgupta, S., Chakraborty, S., Weindorf, D. C., Li, B., Silva, S. H. G., & Bhattacharyya, K. (2022). Influence of auxiliary soil variables to improve PXRF-based soil fertility evaluation in India. Geoderma Regional, 30, e00557.

    Article  Google Scholar 

  • Dasgupta, S., Sarkar, A., Chaitanya, A. K., Saha, A., Dey, A., & Mondal, R. (2017). Response of potato crop to integrated nutrient management in the Indo-Gangetic alluvial soils of West Bengal, India. Journal of Experimental Agriculture International, 1–10.

    Google Scholar 

  • Dasgupta, S., Sengupta, S., Saha, S., Sarkar, A., & Anantha, K. C. (2021). Approaches in advanced soil elemental extractability: Catapulting future soil–plant nutrition research. In Soil Science: Fundamentals to Recent Advances (pp. 191–236). Springer, Singapore.

    Google Scholar 

  • Demand and Supply Projections Towards 2033; Crops, Livestock, Fisheries And Agricultural Inputs; The Working Group Report, February, 2018, Niti Ayog.

    Google Scholar 

  • Dharumarajan, S., Hegde, R., Janani, N., & Singh, S. (2019). The need for digital soil mapping in India. Geoderma Regional, 16, e00204. https://doi.org/10.1016/j.geodrs.2019.e00204

    Article  Google Scholar 

  • Dinnes, D. L., Karlen, D. L., Jaynes, D. B., Kaspar, T. C., Hatfield, J. L., Colvin, T. S., & Cambardella, C. A. (2002). Review and interpretation: Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils.

    Google Scholar 

  • Duda, B. M., Weindorf, D. C., Chakraborty, S., Li, B., Man, T., Paulette, L., & Deb, S. (2017). Soil characterization across catenas via advanced proximal sensors. Geoderma, 298, 78–91.

    Article  CAS  Google Scholar 

  • Evans, C. V., & Franzmeier, D. P. (1988). Color index values to represent wetness and aeration in some Indiana soils. Geoderma, 41(3–4), 353–368.

    Article  Google Scholar 

  • Fan, Z., Herrick, J. E., Saltzman, R., Matteis, C., Yudina, A., Nocella, N., Crawford, E., Parker, R., & Van Zee, J. (2017). Measurement of soil color: A comparison between smartphone camera and the munsell color charts. Soil Science Society of America Journal, 81(5), 1139–1146.

    Article  CAS  Google Scholar 

  • Gao, L., Huang, M., Zhang, W., Qiao, L., Wang, G., & Zhang, X. (2021). Comparative study on spatial digital mapping methods of soil nutrients based on different geospatial technologies. Sustainability, 13(6), 3270.

    Article  CAS  Google Scholar 

  • García, A., Erenas, M. M., Marinetto, E. D., Abad, C. A., de Orbe-Paya, I., Palma, A. J., & Capitán-Vallvey, L. F. (2011). Mobile phone platform as portable chemical analyzer. Sensors and Actuators b: Chemical, 156(1), 350–359.

    Article  Google Scholar 

  • Gardner, R. A. (1944). California soil color standards and their relation to the Iscc‐Nbs method of designating colors. Soil Science Society of America Journal, 8(C), 355–357.

    Google Scholar 

  • Golicz, K., Hallett, S. H., Sakrabani, R., & Pan, G. (2019). The potential for using smartphones as portable soil nutrient analyzers on suburban farms in central East China. Scientific Reports, 9(1), 1–10.

    Article  CAS  Google Scholar 

  • Gómez-Robledo, L., López-Ruiz, N., Melgosa, M., Palma, A. J., Capitán-Vallvey, L. F., & Sánchez-Marañón, M. (2013). Using the mobile phone as Munsell soil-colour sensor: An experiment under controlled illumination conditions. Computers and Electronics in Agriculture, 99, 200–208.

    Article  Google Scholar 

  • Gorthi, S., Swetha, R. K., Chakraborty, S., Li, B., Weindorf, D. C., Dutta, S., & Majumdar, K. (2021). Soil organic matter prediction using smartphone-captured digital images: Use of reflectance image and image perturbation. Biosystems Engineering, 209, 154–169.

    Article  CAS  Google Scholar 

  • Han, P., Dong, D., Zhao, X., Jiao, L., & Lang, Y. (2016). A smartphone-based soil color sensor: For soil type classification. Computers and Electronics in Agriculture, 123, 232–241.

    Article  Google Scholar 

  • Heuvelink, G. B. (1998). Uncertainty analysis in environmental modelling under a change of spatial scale. In Soil and Water Quality at Different Scales (pp. 255–264). Springer, Dordrecht.

    Google Scholar 

  • Hole, F. D., & Campbell, J. B. (1985). Soil landscape analysis. Government Institutes.

    Google Scholar 

  • Hossain, M. A., Canning, J., Ast, S., Cook, K., Rutledge, P. J., & Jamalipour, A. (2015). Combined “dual” absorption and fluorescence smartphone spectrometers. Optics Letters, 40(8), 1737–1740.

    Article  Google Scholar 

  • Hou, X., He, Y., & Jones, B. T. (2004). Recent advances in portable X-ray fluorescence spectrometry. Applied Spectroscopy Reviews, 39, 1–25.

    Article  CAS  Google Scholar 

  • Hudson, B. D. (1992). The soil survey as paradigm-based science. Soil Science Society of America Journal, 56(3), 836–841.

    Article  Google Scholar 

  • ICAP: Emissions Trading Worldwide: Status Report 2017, Report, International Carbon Action Partnership (ICAP), 2017.

    Google Scholar 

  • Intaravanne, Y., & Sumriddetchkajorn, S. (2015). Android-based rice leaf color analyzer for estimating the needed amount of nitrogen fertilizer. Computers and Electronics in Agriculture, 116, 228–233.

    Article  Google Scholar 

  • Jenny, H. (1930). Factors of soil formation: A system of quantitative pedology. Dover Publications, New York.

    Google Scholar 

  • Kaniu, M. I., Angeyo, K. H., Mwala, A. K., & Mwangi, F. K. (2012). Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches. Talanta, 98, 236–240.

    Article  CAS  Google Scholar 

  • Kenna, T. C., Nitsche, F. O., Herron, M. M., Mailloux, B. J., Peteet, D., Sritrairat, S., Sands, E., & Baumgarten, J. (2011). Evaluation and calibration of a field portable X-Ray fluorescence spectrometer for quantitative analysis of siliciclastic soils and sediments. Journal of Analytical Atomic Spectrometry, 26, 395–405.

    Article  CAS  Google Scholar 

  • Kim, H., Awofeso, O., Choi, Jung, Bae. (2017). Colorimetric analysis of saliva–alcohol test strips by smartphone-based instruments using machine-learning algorithms. Applied Optics, 56(1), 84–92.

    Google Scholar 

  • Korostynska, O., Arshak, K., Velusamy, V., Arshak, A., & Vaseashta, A. (2012). Recent advances in point-of-access water quality monitoring: Water quality. Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, 261–268.

    Google Scholar 

  • Lagacherie, P., McBratney, A., & Voltz, M. (2006). Digital soil mapping: An introductory perspective. Elsevier.

    Google Scholar 

  • Levin, N., Ben-Dor, E., & Singer, A. (2005). A digital camera as a tool to measure color indices and related properties of sandy soils in semi-arid environments. International Journal of Remote Sensing, 26(24), 5475–5492.

    Article  Google Scholar 

  • Li, B., Chakraborty, S., Sosa, M. F. G., Kusi, N. Y. O., & Weindorf, D. C. (2018). Compost cation exchange capacity via portable X-ray fluorescence (PXRF) spectrometry. Compost Science & Utilization, 26(4), 271–278.

    Article  Google Scholar 

  • López-Castañeda, A., Zavala-Cruz, J., Palma-López, D. J., Rincón-Ramírez, J. A., & Bautista, F. (2022). Digital mapping of soil profile properties for precision agriculture in developing countries. Agronomy, 12(2), 353.

    Article  Google Scholar 

  • López-Núñez, R. (2022). Portable X-ray fluorescence analysis of organic amendments: A review. Applied Sciences, 12, 6944. https://doi.org/10.3390/app12146944

    Article  CAS  Google Scholar 

  • McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Article  Google Scholar 

  • Moonrungsee, N., Pencharee, S., & Jakmunee, J. (2015). Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta, 136, 204–209.

    Article  CAS  Google Scholar 

  • Mouazen, A. M., Karoui, R., Deckers, J., De Baerdemaeker, J., & Ramon, H. (2007). Potential of visible and near-infrared spectroscopy to derive colour groups utilising the Munsell soil colour charts. Biosystems Engineering, 97(2), 131–143.

    Article  Google Scholar 

  • Mukhopadhyay, S., & Chakraborty, S. (2020). Use of diffuse reflectance spectroscopy and Nix pro color sensor in combination for rapid prediction of soil organic carbon. Computers and Electronics in Agriculture, 176, 105630.

    Article  Google Scholar 

  • Mukhopadhyay, S., Chakraborty, S., Bhadoria, P. B. S., Li, B., & Weindorf, D. C. (2020). Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixPro™ sensor in landfill soils of India. Geoderma Regional, 20, e00249.

    Article  Google Scholar 

  • Nawar, S., Delbecque, N., Declercq, Y., De Smedt, P., Finke, P., Verdoodt, A., Meirvenne, M., & Mouazen, A. (2019). Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry?. Geoderma, 350. 29–39.https://doi.org/10.1016/j.geoderma.2019.05.002

  • Özdemir, G. K., Bayram, A., Kılıç, V., Horzum, N., & Solmaz, M. E. (2017). Smartphone-based detection of dyes in water for environmental sustainability. Analytical Methods, 9(4), 579–585.

    Article  Google Scholar 

  • Pelegrino, M. H. P., Silva, S. H. G., de Faria, Á. J. G., Mancini, M., Teixeira, A. F. D. S., Chakraborty, S., Weindorf, D. C., Guilherme, L. R. G., & Curi, N. (2022). Prediction of soil nutrient content via PXRF spectrometry and its spatial variation in a highly variable tropical area. Precision Agriculture, 23(1), 18–34. https://doi.org/10.1007/s11119-021-09825-8

    Article  CAS  Google Scholar 

  • PIB. (2020). Press Information Bureau: Government of India. Ministry of Agriculture & Farmers Welfare on 17.02.2020. Retrived from https://pib.gov.in/Pressreleaseshare.aspx?PRID=1603379 on 05.12.2021.

  • Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applications of smartphone-based sensors in agriculture: A systematic review of research. Journal of Sensors, 2015.

    Google Scholar 

  • Puangpila, C., Jakmunee, J., Pencharee, S., & Pensrisirikul, W. (2018). Mobile-phone-based colourimetric analysis for determining nitrite content in water. Environmental Chemistry, 15(7), 403–410.

    Article  CAS  Google Scholar 

  • Rakshit, A., Chakraborty, S., Parihar, M., Singh Meena, V., Kumar Mishra, P., & Bahadur Singh. H. (Eds.). Innovation in Small-Farm Agriculture: Improving Livelihoods and Sustainability (1st ed.). CRC Press. https://doi.org/10.1201/9781003164968

  • Rawal, A., Chakraborty, S., Li, B., Lewis, K., Godoy, M., & Laura, P. (2019). Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer. Geoderma, 338, 375–382. https://doi.org/10.1016/j.geoderma.2018.12.032

    Article  Google Scholar 

  • Resende, M., Curi, N., Rezende, S. B., Corrˆea, G. F., & Ker, J. C. (2014). Pedologia: Base para Distinç˜ao de Ambientes (6th ed.). Editora UFLA.

    Google Scholar 

  • Rossel, R. V., Cattle, S. R., Ortega, A., & Fouad, Y. (2009). In situ measurements of soil color, mineral composition and clay content by vis–NIR spectroscopy. Geoderma, 150(3–4), 253–266.

    Article  Google Scholar 

  • Rossel, R. V., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75.

    Article  Google Scholar 

  • Sarathjith, M. C., Das, B. S., Vasava, H. B., Mohanty, B., Sahadevan, A. S., Wani, S. P., & Sahrawat, K. L. (2014). Diffuse reflectance spectroscopic approach for the characterization of soil aggregate size distribution. Soil Science Society of America Journal, 78(2), 369–376.

    Article  Google Scholar 

  • Sengupta, S., Dasgupta, S., Bhattacharyya, K., Chakraborty, S., & Dey, P. (2022). A Pandemic Resilient Framework for Sustainable Soil Health and Food Security: Response beyond Covid-19.

    Google Scholar 

  • Shen, L., Hagen, J. A., & Papautsky, I. (2012). Point-of-care colorimetric detection with a smartphone. Lab on a Chip, 12(21), 4240–4243.

    Article  CAS  Google Scholar 

  • Shepherd, K. D., & Walsh, M. G. (2002). Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal, 66(3), 988–998.

    Article  CAS  Google Scholar 

  • Shields, J. A., St. Arnaud, R. J., Paul, E. A., & Clayton, J. S. (1966). Measurement of soil color. Canadian Journal of Soil Science, 46(1), 83–90.

    Google Scholar 

  • Siddiqui, S. I., & Chaudhry, S. A. (2018). A review on graphene oxide and its composites preparation and their use for the removal of As3+ and As5+ from water under the effect of various parameters: Application of isotherm, kinetic and thermodynamics. Process Safety and Environmental Protection, 119, 138–163.

    Article  CAS  Google Scholar 

  • Silva, S. H. G., Poggere, G. C., Menezes, M. Dd., Carvalho, G. S., Guilherme, L. R. G., & Curi, N. (2016). Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols). Remote Sens, 8, 614.https://doi.org/10.3390/rs8080614

  • Silva, S. H. G., Ribeiro, B. T., Guerra, M. B. B., de Carvalho, H. W. P., Lopes, G., Carvalho, G. S., Guilherme, L. R. G., Resende, M., Mancini, M., Curi, N., Rafael, R. B. A., Cardelli, V., Cocco, S., Corti, G., Chakraborty, S., Li, B., & Weindorf. D. C. (2021). pXRF in tropical soils: Methodology, applications, achievements and challenges. Advances in Agronomy, 167, 1–62

    Google Scholar 

  • Solmaz, M. E., Mutlu, A. Y., Alankus, G., Kılıç, V., Bayram, A., & Horzum, N. (2018). Quantifying colorimetric tests using a smartphone app based on machine learning classifiers. Sensors and Actuators b: Chemical, 255, 1967–1973.

    Article  CAS  Google Scholar 

  • Staff, S. S., & Staff, S. S. (1951). Soil survey manual. USDA.

    Google Scholar 

  • Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., & Sharp, J. (2016). Evaluation of an inexpensive sensor to measure soil color. Computers and Electronics in Agriculture, 121, 141–148.

    Article  Google Scholar 

  • Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., & Sharp, J. (2017). Using an inexpensive color sensor for rapid assessment of soil organic carbon. Geoderma, 286, 98–103.

    Article  CAS  Google Scholar 

  • Sumriddetchkajorn, S., Chaitavon, K., & Intaravanne, Y. (2013). Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water. Sensors and Actuators b: Chemical, 182, 592–597.

    Article  CAS  Google Scholar 

  • Swetha, R. K., Bende, P., Singh, K., Gorthi, S., Biswas, A., Li, B., & Chakraborty, S. (2020). Predicting soil texture from smartphone-captured digital images and an application. Geoderma, 376, 114562.

    Article  Google Scholar 

  • Swetha, R. K., & Chakraborty, S. (2021). Combination of soil texture with Nix color sensor can improve soil organic carbon prediction. Geoderma, 382, 114775.

    Article  CAS  Google Scholar 

  • Swetha, R. K., Dasgupta, S., Chakraborty, S., Li, B., Weindorf, D. C., Mancini, M., Silva, S. H. G., Ribeiro, B. T., Curi, N., & Ray, D. P. (2022). Using Nix color sensor and Munsell soil color variables to classify contrasting soil types and predict soil organic carbon in Eastern India. Computers and Electronics in Agriculture, 199, 107192.

    Article  Google Scholar 

  • Tavares, T. R., Mouazen, A. M., Alves, E. E. N., dos Santos, F. R., Melquiades, F. L., Pereira de Carvalho, H. W., & Molin, J. P. (2020). Assessing soil key fertility attributes using a portable X-ray Fluorescence: A simple method to overcome matrix effect. Agronomy, 10, 787. https://doi.org/10.3390/agronomy10060787

    Article  CAS  Google Scholar 

  • Teixeira, A. F. D. S., Weindorf, D. C., Silva, S. H. G., Guilherme, L. R. G., & Curi, N. (2018). Portable X-ray fluorescence (PXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses. Cienc. Agrotec, 42(5), 501–512. https://doi.org/10.1590/1413-70542018425017518

    Article  CAS  Google Scholar 

  • Vasques, G. M., Grunwald, S., & Sickman, J. O. (2009). Modeling of soil organic carbon fractions using visible–near-infrared spectroscopy. Soil Science Society of America Journal, 73(1), 176–184.

    Article  CAS  Google Scholar 

  • Vesali, F., Omid, M., Kaleita, A., & Mobli, H. (2015). Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging. Computers and Electronics in Agriculture, 116, 211–220.

    Article  Google Scholar 

  • Wagenet, R. J. (1983). Principles of salt movement in soils. Chemical Mobility and Reactivity in Soil Systems, 11, 123–140.

    CAS  Google Scholar 

  • Waiser, T. H., Morgan, C. L., Brown, D. J., & Hallmark, C. T. (2007). In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Science Society of America Journal, 71(2), 389–396.

    Article  CAS  Google Scholar 

  • Wang, D., Chakraborty, S., Weindorf, D. C., Li, B., Sharma, A., Paul, S., & Ali, M. N. (2015). Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen. Geoderma, 243–244, 157–167.

    Article  Google Scholar 

  • Weindorf, D. C., Bakr, N., & Zhu, Y. (2014). Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications. Advances in Agronomy, 128, 1–45.

    Article  Google Scholar 

  • Weindorf, D. C., Zhu, Y., Haggard, B., Lofton, J., Chakraborty, S., Bakr, N., Zhang, W., Weindorf, W. C., & Legoria, M. (2012). Enhanced pedon horizonation using portable X-ray fluorescence spectrometry. Soil Science Society of America Journal, 76(2), 522–531.

    Article  CAS  Google Scholar 

  • World Health Organization. (2005). Nutrients in drinking water (No. WHO/SDE/WSH/05.09). World Health Organization.

    Google Scholar 

  • Wutscher, H. K., & McCollum, T. G. (1993). Rapid, objective measurement of soil color with a tristimulus colorimeter. Communications in Soil Science and Plant Analysis, 24(17–18), 2165–2169.

    Article  Google Scholar 

  • Yaalon, D. H., & Yaron, B. (1966). Framework for man-made soil changes-an outline of metapedogenesis. Soil Science, 102, 272–277. https://doi.org/10.1097/00010694-196610000-00010

    Article  Google Scholar 

  • Yetisen, A. K., Martinez-Hurtado, J. L., Garcia-Melendrez, A., da Cruz, V. F., & Lowe, C. R. (2014). A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors and Actuators b: Chemical, 196, 156–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somsubhra Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasgupta, S., Lavanya, V., Chakraborty, S., Ray, D.P. (2024). Contemporary Use of Sensors for Soil Qualitative and Quantitative Assessment in the Context of Climate Change. In: Pathak, H., Chatterjee, D., Saha, S., Das, B. (eds) Climate Change Impacts on Soil-Plant-Atmosphere Continuum. Advances in Global Change Research, vol 78. Springer, Singapore. https://doi.org/10.1007/978-981-99-7935-6_7

Download citation

Publish with us

Policies and ethics