Skip to main content

Understanding the Effects of Changing Climate on Weeds and Their Management

  • Chapter
  • First Online:
Climate Change Impacts on Soil-Plant-Atmosphere Continuum

Abstract

Global temperature is shifting, and in addition to monitoring variations in carbon dioxide (CO2) and temperature levels, which are thought to contribute most to global warming, more attention is being paid to the implications of this change for agricultural production systems, including weeds. Future weed management and agricultural production are seriously threatened by rising CO2 levels and resulting changes in global precipitation and temperature. Most plant pests are largely influenced by climatic conditions in terms of their distribution, population structure, life cycle length, infestation stress, and general occurrence. The distribution of Competition among weed species in a weed population and among crops is influenced by changes in atmospheric CO2, precipitation, temperature, and other growth factors. In addition, interactions among these environmental elements can have unanticipated consequences for weed development. According to recent studies, these weeds as a group may have an effective reaction to the recent increase in atmospheric carbon dioxide. Many of these weeds reproduce by vegetative propagation. One of the most important features of the changing climate that can affect existing plants and weeds, allowing the displacement of certain native weeds by others and their spread into previously uninhabited regions, is the change and increase in temperature. Even some weeds develop allelic compounds that enable them to coexist and compete with crops in arid environments. The main aspects of this study are the effects of climate change variables on weed development and the likely variations in weed species. Comprehensive research of the climate change effects components and their interactions on all common weed dynamics are required in order to understand the significance for management of weeds under future climatic forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, T., Zahir, Z. A., Naveed, M., & Kremer, R. J. (2018). Limitations of existing weed control practices necessitate development of alternative techniques based on biological approaches. Advances in Agronomy, 147, 239–280.

    Article  Google Scholar 

  • Abell, J. T., Winckler, G., Anderson, R. F., & Herbert, T. D. (2021). Poleward and weakened westerlies during Pliocene warmth. Nature, 589(7840), 70–75.

    Article  CAS  Google Scholar 

  • Aguilera, J., Gomes, A. R., & Nielsen, K. M. (2011). Genetically modified microbial symbionts as arthropod pest controllers: Risk assessment through the European legislations. Journal of Applied Entomology, 7, 494–502.

    Article  Google Scholar 

  • Al Souki, K. S., Burdová, H., Trubač, J., Štojdl, J., Kuráň, P., Kříženecká, S., Machová, I., Kubát, K., Popelka, J., Malinská, H. A., & Nebeská, D. (2021). Enhanced carbon sequestration in marginal land upon shift towards perennial C4 miscanthus× giganteus: A case study in North-Western Czechia. Agronomy, 11(2), 293.

    Article  CAS  Google Scholar 

  • Alberto, A. M., Ziska, L. H., Cervancia, C. R., & Manalo, P. A. (1996). The influence of increasing carbon dioxide and temperature on competitive interactions between a C3 crop, rice (Oryza sativa) and a C4 weed (Echinochloa glabrescens). Functional Plant Biology, 23(6), 795–802.

    Article  Google Scholar 

  • Amare, T. (2016). Review on impact of climate change on weed and their management. American Journal of Biological and Environmental Statistics, 2(3), 21–27.

    Article  Google Scholar 

  • Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966.

    Article  CAS  Google Scholar 

  • Andrew, I. K., Storkey, J., & Sparkes, D. L. (2015). A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Research, 55(3), 239–248.

    Article  CAS  Google Scholar 

  • Anwar, M. P., Islam, A. M., Yeasmin, S., Rashid, M. H., Juraimi, A. S., Ahmed, S., & Shrestha, A. (2021). Weeds and their responses to management efforts in a changing climate. Agronomy, 11(10), 1921.

    Google Scholar 

  • Asch, F., Dingkuhn, M., Sow, A., & Audebert, A. (2005). Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crops Research, 93(2–3), 223–236.

    Article  Google Scholar 

  • Baite, M. S., Raghu, S., Prabhukarthikeyan, S. R., Keerthana, U., Jambhulkar, N. N., & Rath, P. C. (2020). Disease incidence and yield loss in rice due to grain discolouration. Journal of Plant Diseases and Protection, 127(1), 9–13.

    Article  Google Scholar 

  • Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., & Good, J. E. (2002). Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1), 1–6.

    Article  Google Scholar 

  • Batlla D, Benech-Arnold RL (2004) A predictive model for dormancy loss in Polygonum aviculare L. seeds based on changes in population hydro time parameters. Seed Science Research. 14(3):277–86.

    Google Scholar 

  • Batlla, D., & Benech-Arnold, R. L. (2014). Weed seed germination and the light environment: Implications for weed management. Weed Biology and Management, 14(2), 77–87.

    Article  Google Scholar 

  • Belote, R. T., Weltzin, J. F., & Norby, R. J. (2003). Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist, 161(3), 827–835. https://doi.org/10.1111/j.1469-8137.2004.00977.x

    Article  Google Scholar 

  • Berliner, J., Ganguly, A. K., Kamra, A., & Sirohi, A. (2023). Effect of elevated carbon dioxide on population growth of root-knot nematode, Meloidogyne incognita in tomato. Indian Phytopathology 1–7.

    Google Scholar 

  • Bhagat, S., Kumar, A., Punniya, R., Banotra, M., Sharma, A., Gupta, V., & Sharma, A. (2017). Impact of climate change on crop weed association and their eminent threat and perspective in crop culture. International Journal of Current Microbiology and Applied Sciences, 6(12), 3761–3770.

    Article  Google Scholar 

  • Brinkley, T. R., & Bomford, M. (2002). Agricultural sleeper weeds: What is the potential threat? Kingston, ACT: Bureau of Rural Sciences.

    Google Scholar 

  • Bunce, J. A. (2004). Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia, 140(1), 1.

    Article  Google Scholar 

  • Cavero, J., Zaragoza, C., Suso, M. L., & Pardo, A. (1999). Competition between maize and Datura stramonium in an irrigated field under semi-arid conditions. Weed Research-Oxford, 39, 225–240.

    Article  Google Scholar 

  • Chamberlain, S. A., Bronstein, J. L., & Rudgers, J. A. (2014). How context dependent are species interactions? Ecology Letters, 17(7), 881–890.

    Article  Google Scholar 

  • Chatterjee, D., Kumar, R., Kuotsu, R., & Deka, B. C. (2016). Validation of traditional weed control method through common salt application in the hill region of Nagaland. Current Science, 25, 1459–1467.

    Google Scholar 

  • Chatterjee, D., Saha, S., Swain, B., Chakraborty, D., Nayak, A. K., Pathak, H., & Singh, M. P. (2020). Monitoring and impact assessment of climate change on agriculture using advanced research techniques. pp. 33–53. In: A. Rakshit, S. Ghosh, S. Chakraborty, V. Philip, & A. Datta (Eds.) Soil analysis: Recent trends and applications Springer, Singapore. p. 338+xv.

    Google Scholar 

  • Chauhan, B. S., Matloob, A., Mahajan, G., Aslam, F., Florentine, S. K., & Jha, P. (2017). Emerging challenges and opportunities for education and research in weed science. Frontiers in Plant Science, 8, 1537.

    Article  Google Scholar 

  • Clements, D. R., & Jones, V. L. (2021). Rapid evolution of invasive weeds under climate change: Present evidence and future research needs. Frontiers in Agronomy, 3, 664034.

    Article  Google Scholar 

  • Davies, K. W., Bates, J. D., & Svejcar, L. (2022). Reducing exotic annual grass competition did not improve shrub restoration success during a drought. Rangeland Ecology & Management, 85, 9–14.

    Article  Google Scholar 

  • Díaz, S., Cabido, M., Zak, M., Martínez Carretero, E., & Araníbar, J. (1999). Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. Journal of Vegetation Science, 10(5), 651–660.

    Article  Google Scholar 

  • Donald, W. W., & Khan, M. (1992). Yield loss assessment for spring wheat (Triticum aestivum) infested with Canada thistle (Cirsium arvense). Weed Science, 40(4), 590–598.

    Article  Google Scholar 

  • Duboscq-Carra, V. G., Letourneau, F. J., & Pastorino, M. J. (2018). Looking at the forest from below: The role of seedling root traits in the adaptation to climate change of two Nothofagus species in Argentina. New Forests, 49(5), 613–635.

    Article  Google Scholar 

  • Ennos, A. R. (1997). Wind as an ecological factor. Trends in Ecology & Evolution, 12(3), 108–111.

    Article  CAS  Google Scholar 

  • Finch, D. M., Butler, J. L., Runyon, J. B., Fettig, C. J., Kilkenny, F. F., Jose, S., Frankel, S. J., Cushman, S. A., Cobb, R. C., Dukes, J. S., & Hicke, J. A. (2021). Effects of climate change on invasive species.

    Google Scholar 

  • Friedrich, J., Ge, M., & Pickens, A. (2020). This interactive chart shows changes in the World's Top 10 Emitters.

    Google Scholar 

  • Fuhrer, J. (2003). Agroecosystem responses to combination of elevated CO2, ozone and global climate change. Agriculture, Ecosystems & Environment, 97, 1–20.

    Article  CAS  Google Scholar 

  • Gaba, S., Chauvel, B., Dessaint, F., Bretagnolle, V., & Petit, S. (2010). Weed species richness in winter wheat increases with landscape heterogeneity. Agriculture, Ecosystems & Environment, 138(3–4), 318–323.

    Article  Google Scholar 

  • Gerard, P. J., Kean, J. M., Phillips, C. B., Fowler, S. V., Withers, T. M., Walker, G. P., & Charles, J. G. (2010). Possible impacts of climate change on biocontrol systems in New Zealand. Report for MAF Pol Project 0910–11689.

    Google Scholar 

  • Giannini, A., Biasutti, M., Held, I. M., & Sobel, A. H. (2008). A global perspective on African climate. Climatic Change, 90(4), 359–383.

    Article  Google Scholar 

  • Grice, A. C. (2006). The impacts of invasive plant species on the biodiversity of Australian rangelands. The Rangeland Journal, 28(1), 27–35.

    Article  Google Scholar 

  • Gupta, R. L. (2013). Impact of climate change on pesticide usage. Climate Change and Environment, p. 128.

    Google Scholar 

  • Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and plant sexual reproduction. Trends in Plant Science, 14(1), 30–36. https://doi.org/10.1016/j.tplants.2008.11.001

    Article  CAS  Google Scholar 

  • Hikosaka, K., Onoda, Y., Kinugasa, T., Nagashima, H., Anten, N. P., & Hirose, T. (2005). Plant responses to elevated CO2 concentration at different scales: leaf, whole plant, canopy, and population. In Forest ecosystems and environments (pp. 3–13). Springer, Tokyo.

    Google Scholar 

  • Hyvönen, T. (2011). Impact of temperature and germination time on the success of a C4 weed in a C3 crop: Amaranthus retroflexus and spring barley. Agricultural and Food Science, 20(2), 183–189.

    Article  Google Scholar 

  • IPCC. (2007). Climate change: Impacts, adaptation and vulnerability (p. 986). IPCC Secretariat.

    Google Scholar 

  • Iqbal, M. C., Wijesundera, D. S., & Ranwala, S. M. (2014). Climate change, invasive alien flora and concerns for their management in Sri Lanka. Ceylon Journal of Science (Bio. Sci.), 43(2), 1–5.

    Google Scholar 

  • Jaganathan, G. K., & Liu, B. (2015). Role of seed sowing time and microclimate on germination and seedling establishment of Dodonaea viscosa (Sapindaceae) in a seasonal dry tropical environment—an insight into restoration efforts. Botany, 93(1), 23–29.

    Article  Google Scholar 

  • Keighery, G., & Longman, V. (2004). The naturalized vascular plants of Western Australia 1: Checklist, environmental weeds and distribution in IBRA regions. Plant Protection Quarterly, 19(1), 12–32.

    Google Scholar 

  • Kraehmer, H., Laber, B., Rosinger, C., & Schulz, A. (2014). Herbicides as weed control agents: state of the art: I. Weed control research and safener technology: the path to modern agriculture. Plant Physiology, 166(3), 1119–31.

    Google Scholar 

  • Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W., & Maywald, G. F. (2003). Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. Journal of Applied Ecology, 40(1), 111–24.

    Google Scholar 

  • Kumar, R., Chatterjee, D., Deka, B. C., Kumar, M., Kuotsu, R., Merasenla, A. O., & Ngachan, S. V. (2016). Weed management practices in upland direct seeded jhum rice under the Eastern Himalaya. Research on Crops, 17(2), 199–204.

    Article  Google Scholar 

  • Marambe, B., & Wijesundara, S. (2021). Effects of climate change on weeds and invasive alien plants in Sri Lankan agro-ecosystems: Policy and management implications. Frontiers in Agronomy, 3, 641006. https://doi.org/10.3389/fagro.2021.641006

    Article  Google Scholar 

  • Matloob, A., Khaliq, A., & Chauhan, B. S. (2015). Weeds of rice in Asia: Problems and opportunities. Advances of Agronomy, 130, 291–336.

    Article  Google Scholar 

  • Meksawat, S., & Pornprom, T. (2010). Allelopathic effect of itchgrass (Rottboellia cochinchinensis) on seed germination and plant growth. Weed Biology and Management, 10(1), 16–24.

    Article  Google Scholar 

  • Mishra, J. S., Kumar, R., Kumar, R., Rao, K. K., & Bhatt, B. P. (2019). Weed density and species composition in rice-based cropping systems as affected by tillage and crop rotation. Indian Journal of Weed Science, 51(2), 116.

    Article  Google Scholar 

  • Naidu, V. S., & Varshney, J. A. (2011). Interactive effect of elevated CO. Indian Journal of Agricultural Sciences, 81(11), 1026–1029.

    Google Scholar 

  • Narwal, S. S., & Haouala, R. (2013). Role of allelopathy in weed management for sustainable agriculture. InAllelopathy (pp. 217–249). Springer, Berlin, Heidelberg.

    Google Scholar 

  • Nayak, A, K., Chatterjee, D., Tripathi, R., Shahid, M., Vijayakumar, S., Satapathy, B. S., Kumar, A., Mohanty, S., Bhattacharyya, P., Mishra, P., Kumar, U., Mohapatra, S. D., Panda, B. B., Rajak, M., Bhaduri, D., Munda, S., Chakraborty, K., Priyadarsani, S., Swain, C. K., Moharana, K. C., Nayak, P. K., Kumar, G. A. K., Swain, P., Tesfai, M., Nagaothu, U. S., & Pathak, H. (2020). Climate smart agricultural technologies for rice production system in Odisha. ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India, pp. 366.

    Google Scholar 

  • Ooi, M. K., Denham, A. J., Santana, V. M., & Auld, T. D. (2014). Temperature thresholds of physically dormant seeds and plant functional response to fire: Variation among species and relative impact of climate change. Ecology and Evolution, 4(5), 656–671.

    Article  Google Scholar 

  • Patterson, D. T. (1986). Responses of soybean (Glycine max) and three C4 grass weeds to CO2 enrichment during drought. Weed Science, 34(2), 203–210.

    Article  Google Scholar 

  • Patterson, D. T. (1995). Weeds in a changing climate. Weed Science, 43, 685–701.

    Article  CAS  Google Scholar 

  • Patterson, D. T., Highsmith, M. T., & Flint, E. P. (1988). Effects of temperature and CO2 concentration on the growth of cotton (Gossypium hirsutum), spurred anoda (Anoda cristata), and velvetleaf (Abutilon theophrasti). Weed Science, 36(6), 751–757.

    Article  Google Scholar 

  • Patterson, D. T., Westbrook, J. K., Lingren, P. D., & Rogasik, J. (1999). Weeds, insects, and diseases. Climatic Change, 43(4), 711–727.

    Article  CAS  Google Scholar 

  • Peters, K., & Gerowitt, B. (2014). Important maize weeds profit in growth and reproduction from climate change conditions represented by higher temperatures and reduced humidity. Journal of Applied Botany and Food Quality, 21, 87.

    Google Scholar 

  • Peters, K., Breitsameter, L., & Gerowitt, B. (2014). Impact of climate change on weeds in agriculture: A review. Agronomy for Sustainable Development, 34(4), 707–721.

    Article  Google Scholar 

  • Rai, P. K., & Singh, J. S. (2020). Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological Indicators, 111, 106020.

    Article  Google Scholar 

  • Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K., & Chauhan, B. S. (2017). Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Frontiers in Plant Science, 8, 95.

    Article  CAS  Google Scholar 

  • Rana, S. S., & Rana, M. C. (2016). Principles and practices of weed management. Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur 138. https://doi.org/10.13140/RG.2.2.33785.47207

  • Rao, A. N., Singh, R. G., Mahajan, G., & Wani, S. P. (2020). Weed research issues, challenges, and opportunities in India. Crop Protection, 134, 104451.

    Article  Google Scholar 

  • Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8(2), 34.

    Article  CAS  Google Scholar 

  • Robinson, T. M., & Gross, K. L. (2010). The impact of altered precipitation variability on annual weed species. American Journal of Botany, 97(10), 1625–1629.

    Article  Google Scholar 

  • Rodenburg, J., Meinke, H., & Johnson, D. E. (2011). Challenges for weed management in African rice systems in a changing climate. The Journal of Agricultural Science, 149(4), 427–435.

    Article  Google Scholar 

  • Rosenzweig, C., & Hillel, D. (1998). Climate change and the global harvest (pp. 1–324). Oxford University Press.

    Google Scholar 

  • Rudov, A., Mashkour, M., Djamali, M., & Akhani, H. (2020). A review of C4 plants in southwest Asia: An ecological, geographical and taxonomical analysis of a region with high diversity of C4 eudicots. Frontiers in Plant Science, 11, 546518.

    Article  Google Scholar 

  • Satapathy, B. S., Duary, B., Saha, S., Munda, S., & Chatterjee, D. (2021). Impact of sowing methods and weed control practices on yield and economics of wet direct seeded rice. Oryza, 58(3), 375–383.

    Article  Google Scholar 

  • Satapathy, B. S., Chatterjee, D., Saha, S., Duary, B., & Singh, T. (2022). Weed management in a direct-seeded rice-ratoon rice cropping system. The Journal of Agricultural Science, 7, 1.

    Google Scholar 

  • Shahzad, A., Ullah, S., Dar, A. A., Sardar, M. F., Mehmood, T., Tufail, M. A., Shakoor, A., & Haris, M. (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research, 28(12), 14211–14232.

    Article  Google Scholar 

  • Singh, R. P., Singh, R. K., & Singh, M. K. (2011). Impact of climate and carbon dioxide change on weeds and their management-a review. Indian Journal of Weed Science, 43(1&2), 1–1.

    Google Scholar 

  • Springer, C. J., & Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176(2), 243–255.

    Article  CAS  Google Scholar 

  • Stiling, P., & Cornelissen, T. (2007). How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13(9), 1823–1842.

    Article  Google Scholar 

  • Travlos, I., Gazoulis, I., Kanatas, P., Tsekoura, A., Zannopoulos, S., & Papastylianou, P. (2020). Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Frontiers in Agronomy, 2, 1.

    Article  Google Scholar 

  • Treharne, K. (1989). The implications of the ‘greenhouse effect’ for fertilizers and agrochemicals, in The Greenhouse Effect and UK Agriculture, CAS Paper 19, ed. R. C. Bennet (Reading: University. of Reading Press), pp. 67–78.

    Google Scholar 

  • Treut, Le., Somerville, H. R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., & Prather, M. (2007a), Historical overview of climate change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (Eds.) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Treut, L., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., Prather, M., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H.L., & Solomon, S. (2007b). Historical overview of climate change science. Earth, 1, 93–127.

    Google Scholar 

  • Tubiello, F. N., Soussana, J. F., & Howden, S. M. (2007). Crop and pasture response to climate change. Proceedings of the National Academy of Sciences, 104(50), 19686–19690.

    Article  CAS  Google Scholar 

  • Tylianakis, J., Didham, R., Bascompte, J., & Wardle, D. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x

  • Varanasi, A., Prasad, P. V., & Jugulam, M. (2016). Impact of climate change factors on weeds and herbicide efficacy. Advances in Agronomy, 135, 107–146.

    Article  Google Scholar 

  • Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.

    Article  CAS  Google Scholar 

  • Wang, R, (2014), The fig wasps associated with Ficus microcarpa, an invasive fig tree. University of Leeds.

    Google Scholar 

  • War, A. R., Taggar, G. K., War, M. Y., & Hussain, B. (2016). Impact of climate change on insect pests, plant chemical ecology, tritrophic interactions and food production. International Journal of Clinical and Biological Sciences, 1(02), 16–29.

    Google Scholar 

  • Ward, J. K., Tissue, D. T., Thomas, R. B., & Strain, B. R. (1999). Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biology, 5(8), 857–867.

    Article  Google Scholar 

  • Wato, T. (2020). The role of allelopathy in pest management and crop production-A review. Food Science and Quality Management, 93, 13–21.

    Google Scholar 

  • Wing, I. S., De Cian, E., & Mistry, M. N. (2021). Global vulnerability of crop yields to climate change. Journal of Environmental Economics and Management, 109, 102462.

    Article  Google Scholar 

  • Wolfe, D. W., Ziska, L., Petzoldt, C., Seaman, A., Chase, L., & Hayhoe, K. (2008). Projected change in climate thresholds in the Northeastern US: Implications for crops, pests, livestock, and farmers. Mitigation and Adaptation Strategies for Global Change, 13(5), 555–575.

    Article  Google Scholar 

  • Zeng, Q., Liu, B., Gilna, B., Zhang, Y., Zhu, C., Ma, H., Pang, J., Chen, G., & Zhu, J. (2011). Elevated CO2 effects on nutrient competition between a C3 crop (Oryza sativa L.) and a C4 weed (Echinochloa crusgalli L.). Nutrient Cycling in Agroecosystems, 89(1), 93–104.

    Google Scholar 

  • Zhu, C., Zeng, Q., Ziska, L. H., Zhu, J., Xie, Z., & Liu, G. (2008). Effect of nitrogen supply on carbon dioxide–induced changes in competition between rice and barnyardgrass (Echinochloa crus-galli). Weed Science, 56(1), 66–71.

    Article  CAS  Google Scholar 

  • Ziska, L. H. (2000). The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Global Change Biology, 6(8), 899–905.

    Article  Google Scholar 

  • Ziska, L. H., & McClung, A. (2008). Differential response of cultivated and weedy (red) rice to recent and projected increases in atmospheric carbon dioxide. Agronomy Journal, 100, 1259–1263.

    Article  CAS  Google Scholar 

  • Ziska, L. H., Tomecek, M. B., & Gealy, D. R. (2010). Competitive interactions between cultivated and red rice as a function of recent and projected increases in atmospheric carbon dioxide. Agronomy Journal, 102(1), 118–123.

    Article  CAS  Google Scholar 

  • Ziska, L. H., Blumenthal, D. M., & Franks, S. J. (2019). Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management, 12(2), 79–88.

    Article  Google Scholar 

  • Ziska, L. H., Blumenthal, D. M., Runion, G. B., Hunt, ERJr., & Diaz-Soltero, H. (2011). Invasive species and climate change: an agronomic perspective. Climate Change, 105, 13–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushmita Munda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munda, S. et al. (2024). Understanding the Effects of Changing Climate on Weeds and Their Management. In: Pathak, H., Chatterjee, D., Saha, S., Das, B. (eds) Climate Change Impacts on Soil-Plant-Atmosphere Continuum. Advances in Global Change Research, vol 78. Springer, Singapore. https://doi.org/10.1007/978-981-99-7935-6_15

Download citation

Publish with us

Policies and ethics