Skip to main content

Impact of Conservation Agriculture on Soil Health and Environmental Sustainability

  • Chapter
  • First Online:
Climate Change Impacts on Soil-Plant-Atmosphere Continuum

Part of the book series: Advances in Global Change Research ((AGLO,volume 78))

  • 90 Accesses

Abstract

The ever-rising global population poses significant challenges to global food security, particularly in developing countries. In order to feed the growing population, natural resources are severely depleted due to unsustainable agricultural practices leading to the widespread problem of land degradation and loss of natural habitat. Therefore, agricultural research should focus on developing eco-friendly and sustainable crop production systems with higher crop productivity to achieve sustainable development goals. Conventional agriculture encourages excessive tillage and crop residue removal. Excessive tillage and crop residue removal are deteriorating soil health due to loss of soil organic carbon (SOC) content, reduction of air-filled porosity, increased compaction, nutrient imbalance, and destruction of soil fauna, etc. Therefore, alternative methods of cultivation are being developed to maintain or improve soil quality. Conservation agriculture (CA) includes several resource conservation technologies facilitating (i) minimum soil disturbance, (ii) soil surface cover in the forms of crop residue retention or cover crop and (iii) crop rotation for improving soil health. It is now widely reported by several researchers that CA improves the status of SOC, particularly in the surface soil layer, as a possible means of soil carbon sequestration. Permanent residue retention or cultivation of cover crops also protects the soil from raindrop splashing impact and enhances soil aggregate stability, thereby reducing soil erosion. In addition, the soil at CA promotes microbial growth, maintains natural diversity, and encourages the earthworm population to better ecosystem services. Researchers have argued that CA is an effective means of C-sequestration and could be an effective mitigation strategy for climate change. A global initiative of ‘4 per mile’ has also been initiated to achieve the goal. As a courtesy, global policy initiatives should promote CA practices to conserve natural resources and better maintain soil health, as our sustainable future strategy for crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • NITI Aayog. (2018). Shifting Cultivation: Towards a Transformational Approach. Report of Working Group III, NITI Aayog, Government of India, 30p.

    Google Scholar 

  • Aggarwal, P., Choudhary, K. K., Singh, A. K., & Chakraborty, D. (2006). Variation in soil strength and rooting characteristics of wheat in relation to soil management. Geoderma, 136, 353–363.

    Article  Google Scholar 

  • Ahmad, M., Chakraborty, D., Aggarwal, P., Bhattacharyya, R., & Singh, R. (2018). Modelling soil water dynamics and crop water use in a soybean-wheat rotation under chisel tillage in a sandy clay loam soil. Geoderma, 327, 13–24.

    Article  Google Scholar 

  • Al-Kaisi, M. M., & Yin, X. (2005). Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. Journal of Environmental Quality, 34, 437–445.

    Article  CAS  Google Scholar 

  • Alletto, L., & Coquet, Y. (2009). Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma, 152, 85–94.

    Article  Google Scholar 

  • Alletto, L., Coquet, Y., & Justes, E. (2011). Effects of tillage and fallow period management on soil physical behaviour and maize development. Agricultural Water Management, 102, 74–85.

    Article  Google Scholar 

  • Alvarez, R., & Steinbach, H. S. (2009). A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research, 104, 1–15.

    Article  Google Scholar 

  • AQUASTAT FAO. (2018). FAO’s information system on water and agriculture. http://www.fao.org/ag/ca/6c.html. Accessed 21 May 2018.

  • Arai, M., Miura, T., Tsuzura, H., Minamiya, Y., & Kaneko, N. (2017). Two-year responses of earthworm abundance, soil aggregates, and soil carbon to no-tillage and fertilization. Geoderma, 332, 135–141.

    Article  Google Scholar 

  • Baker, J. M., Ochsner, T. E., Venterea, R. T., & Griffis, T. J. (2007). Tillage and soil carbon sequestration—What do we really know? Agriculture, Ecosystems & Environment, 118, 1–5.

    Article  CAS  Google Scholar 

  • Batey, T. (2009). Soil compaction and soil management–a review. Soil Use and Management, 25, 335–345.

    Article  Google Scholar 

  • Bengough, A. G., McKenzie, B. M., Hallett, P. D., & Valentine, T. A. (2011). Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62, 59–68.

    Article  CAS  Google Scholar 

  • Beven, K., & Germann, P. (2013). Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071–3092.

    Article  Google Scholar 

  • Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S., & Yadav, M. (2016). Sustainability issues on rice–wheat cropping system. International Soil and Water Conservation Research, 4, 64–74.

    Article  Google Scholar 

  • Bhattacharyya, R., Ghosh, B., Mishra, P., Mandal, B., Rao, C., Sarkar, D., Das, K., Anil, K., Lalitha, M., Hati, K., & Franzluebbers, A. (2015). Soil degradation in India: Challenges and potential solutions. Sustainability., 7(4), 3528–3570.

    Article  Google Scholar 

  • Blanchart, E., Albrecht, A., Brown, G., Decaens, T., Duboisset, A., Lavelle, P., Mariani, L., & Roose, E. (2004). Effects of tropical endogeic earthworms on soil erosion. Agriculture, Ecosystems & Environment, 104, 303–315.

    Article  Google Scholar 

  • Blanco-Canqui, H., & Lal, R. (2010). Soil and water conservation. In Principles of soil conservation and management. Springer.

    Google Scholar 

  • Blum, W. E. H. (2013). Soil and land resources for agricultural production: General trends and future scenarios-A worldwide perspective. International Soil and Water Conservation Research, 1, 1–14.

    Article  Google Scholar 

  • Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., & Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). CATENA, 160, 376–384.

    Article  Google Scholar 

  • Bormann, H., & Klaassen, K. (2008). Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils. Geoderma, 145, 295–302.

    Article  Google Scholar 

  • Botta, G. F., Tolon-Becerra, A., Lastra-Bravo, X., & Tourn, M. (2010). Tillage and traffic effects (planters and tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas. Soil Tillage and Research, 110, 167–174.

    Article  Google Scholar 

  • Bottinelli, N., Angers, D. A., Hallaire, V., Michot, D., Le Guillou, C., Cluzeau, D., Heddadj, D., & Menasseri-Aubry, S. (2017). Tillage and fertilization practices affect soil aggregate stability in a Humic Cambisol of Northwest France. Soil Tillage and Research, 170, 14–17.

    Article  Google Scholar 

  • Brauman, A. (2000). Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. European Journal of Soil Biology, 36, 117–125.

    Article  Google Scholar 

  • Briones, M. J. I., & Schmidt, O. (2017). Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Global Change Biology, 23(10), 4396–4419.

    Article  Google Scholar 

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124, 3–22.

    Article  CAS  Google Scholar 

  • Brouder, S. M., & Gomez-Macpherson, H. (2014). The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agriculture, Ecosystems & Environment, 187, 11–32.

    Article  Google Scholar 

  • Busari, M. A., Kukal, S. S., Kaur, A., Bhatt, R., & Dulazi, A. A. (2015). Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation and Research, 3, 119–129.

    Article  Google Scholar 

  • Castellanos-Navarrete, A., Rodriguez-Aragones, C., De Goede, R. G. M., Kooistra, M. J., Sayre, K. D., Brussaard, L., & Pulleman, M. M. (2012). Earthworm activity and soil structural changes under conservation agriculture in central Mexico. Soil Tillage and Research, 123, 61–70.

    Article  Google Scholar 

  • Chaplot, V., Abdalla, K., Alexis, M., Bourennane, H., Darboux, F., Dlamini, P., Everson, C., Mchunu, C., Muller-Nedebock, D., Mutema, M., Quenea, K., Thenga, H., & Chivenge, P. (2015). Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agriculture, Ecosystems & Environment, 203, 110–118.

    Article  CAS  Google Scholar 

  • Chatterjee, D., Datta, S. C., & Manjaiah, K. M. (2014a). Transformation of short-range order minerals in maize (Zea mays L.) rhizosphere. Plant, Soil and Environment, 60(6), 241–248.

    Google Scholar 

  • Chatterjee, D., Datta, S. C., & Manjaiah, K. M. (2016). Citric acid induced potassium and silicon release in alfisols, vertisols and inceptisols of India. Proceedings of the National Academy of Sciences, India, Section B Biological Sciences, 86(2), 429–439. https://doi.org/10.1007/s40011-014-0464-y

  • Chatterjee, D., Saha, S., Pradhan, A., Swain, C. K., Venkatramaiah, E., Nayak, A. K., & Pathak, H. (2021). Reducing methane emission from lowland rice ecosystem. In A. Rakshit, S. K. Singh, P. C. Abhilash, A. Biswas (Eds.), Soil science: fundamentals to recent advances. Springer. https://doi.org/10.1007/978-981-16-0917-6_25

  • Chatterjee, D. (2016). Strengths-weaknesses-opportunities-threats (SWOT) analysis of conservation agriculture. Indian Journal of Hill Farming, 29(1), 18–23.

    Google Scholar 

  • Chatterjee, D., Datta, S. C., & Manjaiah, K. M. (2013). Clay carbon pools and their relationship with short-range order minerals: Avenues to mitigate climate change? Current Science, 105(10), 1404–1410.

    CAS  Google Scholar 

  • Chatterjee, D., Datta, S. C., & Manjaiah, K. M. (2014b). Fractions, uptake and fixation capacity of phosphorus and potassium in three contrasting soil orders. Journal of Soil Science and Plant Nutrition, 14(3), 640–656. https://doi.org/10.4067/S0718-95162014005000051

    Article  Google Scholar 

  • Chatterjee, D., Datta, S. C., & Manjaiah, K. M. (2015a). Effect of citric acid treatment on release of phosphorus, aluminium and iron from three dissimilar soils of India. Archives of Agronomy and Soil Science, 61(1), 105–117. https://doi.org/10.1080/03650340.2014.919449

    Article  CAS  Google Scholar 

  • Chatterjee, D., Datta, S. C., & Manjaiah, K. M. (2015b). Characterization of citric acid induced transformation of short range order minerals in alfisol, inceptisol and vertisol of India. European Journal of Mineralogy, 27, 551–557. https://doi.org/10.1127/ejm/2015/0027-2446

    Article  CAS  Google Scholar 

  • Chatterjee, D., Mohanty, S., Guru, P. K., Swain, C. K., Tripathi, R., Shahid, M., Kumar, U., Kumar, A., Bhattacharyya, P., Gautam, P., Lal, B., Dash, P. K., & Nayak, A. K. (2018). Comparative assessment of urea briquette applicators on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice. Agriculture, Ecosystems and Environment, 252, 178–190. https://doi.org/10.1016/j.agee.2017.10.013

    Article  CAS  Google Scholar 

  • Chaudhary, D. R., Saxena, J., Lorenz, N., & Dick, R. P. (2012). Distribution of recently fixed photosynthate in a switchgrass plant-soil system. Plant, Soil and Environment, 58(6), 249–255.

    Article  CAS  Google Scholar 

  • Chen, G., & Weil, R. R. (2011). Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage and Research, 117, 17–27.

    Article  Google Scholar 

  • Commission, E. (2006). Thematic strategy for soil protection. European Commission.

    Google Scholar 

  • Connor, D. J. (2008). Organic agriculture cannot feed the world. Field Crops Research, 106(2), 187.

    Article  Google Scholar 

  • Corsi, S., Friedrich, T., Kassam, A., Pisante, M., & Sà, J. D. M. (2012). Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: A literature review. Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Das, A., Devi, M. T., Babu, S., Ansari, M., Layek, J., Bhowmick, S. N., Yadav, G. S., & Singh, R. (2018). Cereal-legume cropping system in Indian Himalayan region for food and environmental sustainability. In Legumes for soil health and sustainable management (pp. 33–76). Springer.

    Google Scholar 

  • Das, A., Basavaraj, S., Layek, J., Ramkrushna, G. I., Lal, R., Rangappa, K., Yadav, G. S., Babu, S., Ghosh, P. K., & Ngachan, S. (2020). Can conservation tillage and residue management enhance energy use efficiency and sustainability of rice–Pea system in the Eastern Himalayas? Archives of Agronomy and Soil Science, 66(6), 830–846.

    Article  CAS  Google Scholar 

  • Das, A., Ghosh, P. K., Lal, R., Saha, R., & Ngachan, S. (2017a). Soil quality effect of conservation practices in maize–rapeseed cropping system in Eastern Himalaya. Land Degradation and Development, 28, 1862–1874.

    Article  Google Scholar 

  • Das, A., Layek, J., Idapuganti, R. G., Basavaraj, S., Lal, R., Rangappa, K., Yadav, G. S., Babu, S., & Ngachan, S. (2021). Conservation tillage and residue management improves soil properties under a upland rice–rapeseed system in the subtropical eastern Himalayas. Land Degradation and Development, 31(14), 1775–1791.

    Article  Google Scholar 

  • Das, A., Layek, J., Ramkrushna, G. I., Patel, D. P., Choudhury, B. U., Chowdhury, S., & Ngachan, S. V. (2014). Raised and sunken bed land configuration for crop diversification and crop and water productivity enhancement in rice paddies of the north eastern region of India. Paddy and Water Environment, 13, 571–580.

    Article  Google Scholar 

  • Das, A., Layek, J., Ramkrushna, G. I., Rangappa, K., Lal, R., Ghosh, P. K., Choudhury, B. U., Mandal, S., Ngangom, B., Dey, U., & Prakash, N. (2019). Effects of tillage and rice residue management practices on lentil root architecture, productivity and soil properties in India’s lower Himalayas. Soil Tillage and Research, 194, 104313.

    Article  Google Scholar 

  • Das, A., Lyngdoh, D., Ghosh, P. K., LalR, L. J., & Idapuganti, R. G. (2018b). Tillage and cropping sequence effect on physico-chemical and biological properties of soil in Eastern Himalayas, India. Soil Tillage and Research, 180, 182–193.

    Article  Google Scholar 

  • Das, A., Ramkrushna, G. I., Makdoh, B., Sarkar, D., Layek, J., Mandal, S., & Lal, R. (2017b). Managing soils of the lower Himalayas. Encyclopedia in Soil Science, Third Edition. https://doi.org/10.1081/E-ESS3-120053284pp.1382-1387

    Article  Google Scholar 

  • de Moraes, M. T., Debiasi, H., Carlesso, R., Franchini, J. C., da Silva, V. R., & da Luz, F. B. (2016). Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil Tillage and Research, 155, 351–362.

    Article  Google Scholar 

  • Deubel, A., Hofmann, B., & Orzessek, D. (2011). Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. Soil Tillage and Research, 117, 85–92.

    Article  Google Scholar 

  • Dexter, A. R. (2004). Soil physical quality: Part II. Friability, tillage, tilth and hard-setting. Geoderma, 120, 215–225.

    Article  Google Scholar 

  • Dexter, A. R., Czyż, E. A., Richard, G., & Reszkowska, A. (2008). A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, 143, 243–253.

    Article  Google Scholar 

  • Doran, J. W., & Parkin, T. B. (1996). Quantitative indicators of soil quality: a minimum data set. Methods for Assessing Soil Quality, (methodsforasses), pp. 25–37.

    Google Scholar 

  • Drewry, J. J., Cameron, K. C., & Buchan, G. D. (2008). Pasture yield and soil physical property responses to soil compaction from treading and grazing—A review. Soil Research, 46, 237–256.

    Article  Google Scholar 

  • Fageria, N. K. (2005). Influence of dry matter and length of roots on growth of five field crops at varying soil zinc and copper levels. Journal of Plant Nutrition, 27, 1517–1523.

    Article  Google Scholar 

  • FAO. (2011). Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production 1–37 (FAO, 2011).

    Google Scholar 

  • Feng, F. X., Huang, G. B., Chai, Q., & Yu, A. Z. (2010). Tillage and straw management impacts on soil properties, root growth, and grain yield of winter wheat in Northwestern China. Crop Science, 50, 1465–1473.

    Article  Google Scholar 

  • Gautam, P., Lal, B., Panda, B. B., Bihari, P., Chatterjee, D., Singh, T., Nayak, P. K., & Nayak, A. K. (2020). Alteration in agronomic practices to utilize rice fallows for higher system productivity and sustainability. Field Crops Research, 260, 108005. https://doi.org/10.1016/j.fcr.2020.108005

    Article  Google Scholar 

  • Gerke, H. H. (2006). Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science, 169, 382–400.

    Article  CAS  Google Scholar 

  • Ghosh, B. N., Dogra, P., Sharma, N. K., Bhattacharyya, R., & Mishra, P. K. (2015). Conservation agriculture impact for soil conservation in maize–wheat cropping system in the Indian sub-Himalayas. International Soil Water and Conservation Research, 3(2), 112–118.

    Article  Google Scholar 

  • Ghosh, B. N., Sharma, N. K., Dogra, P., & Dadhwal, K. S. (2012). Effect of integrated organic input management in maize- wheat cropping system in sloping lands of north-west Himalayas. Indian Journal of Soil Conservation, 40(1), 84–89.

    Google Scholar 

  • Ghosh, P. K., Das, A., Saha, R., Kharkrang, E., Tripathi, A. K., Munda, G. C., & Ngachan, S. V. (2010). Conservation agriculture towards achieving food security in North East India. Cursos e Congresos Da Universidade De Santiago De Compostela, 99(7), 915–921.

    Google Scholar 

  • Guaman, V., Båth, B., Hagman, J., Gunnarsson, A., & Persson, P. (2016). Short time effects of biological and inter-row subsoiling on yield of potatoes grown on a loamy sand, and on soil penetration resistance, root growth and nitrogen uptake. European Journal of Agronomy, 80, 55–65.

    Article  Google Scholar 

  • Guo, L. J., Zhang, Z. S., Wang, D. D., Li, C. F., & Cao, C. G. (2015). Effects of short-term conservation management practices on soil organic carbon fractions and microbial community composition under a rice-wheat rotation system. Biology and Fertility of Soils, 51, 65–75.

    Article  CAS  Google Scholar 

  • Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage and Research, 82, 121–145.

    Article  Google Scholar 

  • Hazarika, S., Parkinson, R., Bol, D. L., Russell, P., Donovan, S., & Allen, D. (2009). Effect of tillage system and straw management on organic matter dynamics. Agronomy for Sustainable Development, 29, 525–533.

    Article  CAS  Google Scholar 

  • He, J., Kuhn, N. J., Zhang, X. M., Zhang, X. R., & Li, H. W. (2009). Effects of 10 years of conservation tillage on soil properties and productivity in the farming–pastoral ecotone of Inner Mongolia, China. Soil Use and Management, 25, 201–209.

    Article  Google Scholar 

  • Higashi, T., Yunghui, M., Komatsuzaki, M., Miura, S., Hirata, T., Araki, H., Kaneko, N., & Ohta, H. (2014). Tillage and cover crop species affect soil organic carbon in Andosol, Kanto, Japan. Soil Tillage and Research, 138, 64–72.

    Article  Google Scholar 

  • Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 543–555.

    Article  Google Scholar 

  • Horn, R., Fleige, H., Richter, F. H., Czyz, E. A., Dexter, A., Diaz-Pereira, E., Dumitru, E., Enarche, R., Mayol, F., Rajkai, K., de la Rosa, D., & Simota, C. (2005). SIDASS project: Part 5: Prediction of mechanical strength of arable soils and its effects on physical properties at various map scales. Soil Tillage and Research, 82, 47–56.

    Article  Google Scholar 

  • Hou, X., Jia, Z., Han, Q., Sun, H., Wang, W., Nie, J., & Yang, B. (2012). Effects of different rotational tillage patterns on soil structure, infiltration and water storage characteristics in dryland. Transactions of the Chinese Society of Agricultural Engineering, 28, 85–94.

    Google Scholar 

  • Huang, M., Liang, T., Wang, L., & Zhou, C. (2015). Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat–maize double cropping system. CATENA, 128, 195–202.

    Article  CAS  Google Scholar 

  • Huwe, B. (2003). The role of soil tillage for soil structure. In A. El Titi (Ed.), Soil tillage in agroecosystems (pp. 27–49). CRC Press.

    Google Scholar 

  • Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58, 523–546.

    Article  Google Scholar 

  • Jat, S. L., Parihar, C. M., Singh, A. K., Jat, M. L., Jat, R. K., Singh, D. K., & Sai Kumar, R. (2011). Conservation agriculture in maize production systems. DMR Technical Bulletin 2011/4. Directorate of Maize Research, Pusa Campus, New Delhi-110 012, p. 25.

    Google Scholar 

  • Jeschke, W. D., Baig, A., & Hilpert, A. (1997). Sink-stimulated photosynthesis, increased transpiration and increased demand-dependent stimulation of nitrate uptake: Nitrogen and carbon relations in the parasitic association Cuscuta reflexa-Coleus blumei. Journal of Experimental Botany, 48, 915–925.

    Article  CAS  Google Scholar 

  • Johansen, C., Haque, M. E., Bell, R. W., Thierfelder, C., & Esdaile, R. J. (2012). Conservation agriculture for small holder rainfed farming: Opportunities and constraints of new mechanized seeding systems. Field Crops Research, 132, 18–32.

    Article  Google Scholar 

  • Jones, D. T., & Eggleton, P. (2000). Sampling termite assemblages in tropical forests: Testing a rapid biodiversity assessment protocol. Journal of Applied Ecology, 37, 191–203.

    Article  Google Scholar 

  • Kahlon, M. S., Lal, R., & Ann-Varughese, M. (2013). Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil Tillage and Research, 126, 151–158.

    Article  Google Scholar 

  • Kargas, G., Kerkides, P., & Poulovassilis, A. (2012). Infiltration of rain water in semi-arid areas under three land surface treatments. Soil Tillage and Research, 120, 15–24.

    Article  Google Scholar 

  • Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2009). The spread of conservation agriculture: Justification, sustainability and uptake. International Journal of Agricultural Sustainability, 7, 292–320.

    Article  Google Scholar 

  • Kawaguchi, T., Kyoshima, T., & Kaneko, N. (2011). Mineral nitrogen dynamics in the casts of epigeic earthworms (Metaphire hilgendorfi: Megascolecidae). Soil Science and Plant Nutrition, 57, 387–395.

    Article  CAS  Google Scholar 

  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. The Soil, 2, 111.

    Article  Google Scholar 

  • Kuhn, N. J., Hu, Y., Bloemertz, L., He, J., Li, H., & Greenwood, P. (2016). Conservation tillage and sustainable intensification of agriculture: Regional versus global benefit analysis. Agriculture, Ecosystems & Environment, 216, 155–165.

    Article  Google Scholar 

  • Kumar, V., Saharawat, Y. S., Gathala, M. K., Jat, A. S., Singh, S. K., Chaudhary, N., & Jat, M. L. (2013). Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic Plains. Field Crops Research, 142, 1–8.

    Article  Google Scholar 

  • Kumari, M., Chakraborty, D., Gathala, M. K., Pathak, H., Dwivedi, B. S., Tomar, R. K., Garg, R. N., Singh, R., & Ladha, J. K. (2011). Soil aggregation and associated organic carbon fractions as affected by tillage in a rice–wheat rotation in North India. Soil Science Society of America Journal, 75(2), 560–567.

    Article  CAS  Google Scholar 

  • Kutilek, M. (2004). Soil hydraulic properties as related to soil structure. Soil Tillage and Research, 79, 175–184.

    Article  Google Scholar 

  • Ladha, J. K., Tirol-Padre, A., Reddy, C. K., Cassman, K. G., Verma, S., Powlson, D. S., Van Kessel, C., de B Richter, D., Chakraborty, D., & Pathak, H. (2016). Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Scientific Reports, 6(1), 1–9.

    Google Scholar 

  • Lal, B., Gautam, P., Nayak, A. K., Panda, B. B., Bihari, P., Tripathi, R., Shahid, M., Guru, P. K., Chatterjee, D., Kumar, U., & Meena, B. P. (2019). Energy and carbon budgeting of tillage for environmentally clean and resilient soil health of rice-maize cropping system. Journal of Cleaner Production, 226, 815–830. https://doi.org/10.1016/j.jclepro.2019.04.041

    Article  CAS  Google Scholar 

  • Lal, B., Gautam, P., Panda, B. B., Tripathi, R., Shahid, M., Bihari, P., Guru, P. K., Singh, T., Meena, R. L., & Nayak, A. K. (2020). Identification of energy and carbon efficient cropping system for ecological sustainability of rice fallow. Ecological Indicators, 115, 106431.

    Article  Google Scholar 

  • Lal, R. (2007). Carbon management in agricultural soils. Mitigation and Adaptation Strategies for Global Change, 12, 303–322.

    Article  Google Scholar 

  • Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., & Garnier, J. (2014). 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environmental Research Letters, 9(10), 105011.

    Article  Google Scholar 

  • Layek, J., Das, A., Ramkrushna, G. I., Panwar, A. S., Verma, B. C., & Roy, A. (2017). Improving rice production under shifting cultivation: A case study. In A. Das, K. P. Mohapatra, S. V. Ngachan, A. S. Panwar, D. J. Rajkhowa, G. I. Ramkrushna & J. Layek (Eds.), Conservation agriculture for advancing food security in changing climate. Today & Tomorrow’s Printers and Publishers, New Delhi - 110 002, India.

    Google Scholar 

  • Layek, J., Chowdhury, S., Ramkrushna, G. I., & Das, A. (2014). Evaluation of different lentil cultivars in lowland rice fallow under no-till system for enhancing cropping intensity and productivity. Indian Journal of Hill Farming, 27(2), 4–9.

    Google Scholar 

  • Lin, E., Li, Y. E., & Guo, L. (2002). Carbon emissions and sinks in agro-ecosystems of China. Science in China. Series C, Life Sciences, 45, 30–39.

    Google Scholar 

  • Lipiec, J., Kuś, J., Słowińska-Jurkiewicz, A., & Nosalewicz, A. (2006). Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage and Research, 89(2), 210–220.

    Article  Google Scholar 

  • Liu, E., Teclemariam, S. G., Yan, C., Yu, J., Gu, R., Liu, S., He, W., & Liu, Q. (2014). Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma, 213, 379–384.

    Article  CAS  Google Scholar 

  • Logsdon, S. D. (2012). Temporal variability of bulk density and soil water at selected field sites. Soil Science, 177, 327–331.

    Article  CAS  Google Scholar 

  • Lungmuana, C. B. U., Saha, S., Singh, S. B., Das, A., Buragohain, J., Dayal, V., Singh, A. R., Boopathi, T., & Dutta, S. K. (2018). Impact of post-burn jhum agriculture on soil carbon pools in the north-eastern Himalayan region of India. Soil Research, 56, 615–622.

    Article  CAS  Google Scholar 

  • Lynch, J. P. (2011). Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology, 156, 1041–1049.

    Article  CAS  Google Scholar 

  • Madari, B., Machado, P. L., Torres, E., de Andrade, A. G., & Valencia, L. I. (2005). No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil Tillage and Research, 80, 185–200.

    Article  Google Scholar 

  • Martens, D. A. (2001). Nitrogen cycling under different soil management systems. Advances in Agronomy, 70, 143–193.

    Article  Google Scholar 

  • Martínez, E., Fuentes, J. P., Silva, P., Valle, S., & Acevedo, E. (2008). Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil Tillage and Research, 99, 232–244.

    Article  Google Scholar 

  • Materechera, S. A. (2009). Tillage and tractor traffic effects on soil compaction in horticultural fields used for peri-urban agriculture in a semi-arid environment of the North West Province, South Africa. Soil Tillage and Research, 103, 11–15.

    Article  Google Scholar 

  • McGarry, D., & Sharp, G. (2003). A rapid, immediate, farmer-usable method of assessing soil structure condition to support conservation agriculture. In Conservation agriculture (pp. 375–380). Springer.

    Google Scholar 

  • Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z. S., Cheng, K., Das, B. S., Field, D. J., & Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma 292, 59–86.

    Google Scholar 

  • Mitchell, J. P., Shrestha, A., Mathesius, K., Scow, K. M., Southard, R. J., Haney, R. L., Schmidt, R., Munk, D. S., & Horwath, W. R. (2017). Cover cropping and no-tillage improve soil health in an arid irrigated cropping system in California’s San Joaquin Valley, USA. Soil Tillage and Research, 165, 325–335.

    Article  Google Scholar 

  • Mondal, S., Chakraborty, D., Das, T. K., Shrivastava, M., Mishra, A. K., Bandyopadhyay, K. K., Aggarwal, P., & Chaudhari, S. K. (2019a). Conservation agriculture had a strong impact on the sub-surface soil strength and root growth in wheat after a 7-year transition period. Soil Tillage and Research, 195, 104385.

    Google Scholar 

  • Mondal, S., & Chakraborty, D. (2022b). Soil nitrogen status can be improved through no-tillage adoption particularly in the surface soil layer: A global meta-analysis. Journal of Cleaner Products, 132874.

    Google Scholar 

  • Mondal, S., & Chakraborty, D. (2022a). Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma, 405, 115443.

    Article  Google Scholar 

  • Mondal, S., Chakraborty, D., Bandyopadhyay, K., Aggarwal, P., & Rana, D. S. (2020). A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response. Land Degradation and Development, 31(5), 557–567.

    Article  Google Scholar 

  • Mondal, S., Chakraborty, D., Tomar, R., Singh, R., Garg, R., Aggarwal, P., Sindhu, G., & Behra, U. (2013). Tillage and residue management effect on soil hydro-physical environment under pigeonpea (Cajanus cajan)-wheat (Triticum aestivum) rotation. Indian Journal of Agricultural Sciences, 83, 502–507.

    Google Scholar 

  • Mondal, S., Das, A., Pradhan, S., Tomar, R., Behera, U., Sharma, A., Paul, A., & Chakraborty, D. (2018). Impact of tillage and residue management on water and thermal regimes of a sandy loam soil under pigeonpea-wheat cropping system. Journal of the Indian Society of Soil Science, 66, 40–52.

    Article  Google Scholar 

  • Mondal, S., Das, T., Thomas, P., Mishra, A., Bandyopadhyay, K., Aggarwal, P., & Chakraborty, D. (2019b). Effect of conservation agriculture on soil hydro-physical properties, total and particulate organic carbon and root morphology in wheat (Triticum aestivum) under rice (Oryza sativa)-wheat system. Indian Journal of Agricultural Sciences, 89(1), 46–55.

    Article  CAS  Google Scholar 

  • Mosaddeghi, M. R., Mahboubi, A. A., & Safadoust, A. (2009). Short-term effects of tillage and manure on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil Tillage and Research, 104, 173–179.

    Article  Google Scholar 

  • Munda, S., Nayak, A. K., Saha, S., Shahid, M., Panda, B. B., Guru, P. K., Tripathi, R., Khanam, R., & Chatterjee, D. (2021). Zero tillage rice transplanting: A resource conservation technology. Technology Bulletin 163. ICAR-National Rice Research Institute Cuttack India, p 6

    Google Scholar 

  • Nayak, A. K., Sarkar, R. K., Chattopadhyay, K., Reddy, J. N., Lal, B., & Chatterjee, D. (Eds.). (2017). Enhancing climate resilience in rice: Abiotic stress tolerance and greenhouse gas mitigation. ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India. ISBN: 81–88409–03–0, pp 118+vi.

    Google Scholar 

  • Ngigi, S. N., Rockström, J., & Savenije, H. H. (2006). Assessment of rainwater retention in agricultural land and crop yield increase due to conservation tillage in Ewaso Ng’iro river basin, Kenya. Physics and Chemistry of the Earth, Parts A/B/C, 31, 910–918.

    Article  Google Scholar 

  • Nyamadzawo, G., Chikowo, R., & Giller, K. E. (2007). Improved legume tree fallows and tillage effects on structural stability and infiltration rates of a kaolinitic sandy soil from central Zimbabwe. Soil Tillage and Research, 96, 182–194.

    Article  Google Scholar 

  • Osunbitan, J. A., Oyedele, D. J., & Adekalu, K. O. (2005). Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Tillage and Research, 82, 57–64.

    Article  Google Scholar 

  • Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., Van Groenigen, K. J., Lee, J., Gestel, N. V., Six, J., Venterea, R. T., & Van Kessel, C. (2015). When does no-till yield more? A global meta-analysis. Field Crops Research, 183, 156–168.

    Article  Google Scholar 

  • Pulleman, M. M., Six, J., van Breeman, N., & Jongmans, A. G. (2005). Soil organic matter distribution as affected by Agricultural management and earthworm activity. European Journal of Soil Science, 56, 453–467.

    Article  CAS  Google Scholar 

  • Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410–416.

    Article  CAS  Google Scholar 

  • Richard, G., Cousin, I., Sillon, J. F., Bruand, A., & Guérif, J. (2001). Effect of compaction on the porosity of a silty soil: Influence on unsaturated hydraulic properties. European Journal of Soil Science, 52, 49–58.

    Article  Google Scholar 

  • Saha, S., Chatterjee, D., Swain, C. K., & Nayak, A. K. (2018). Methane emission from wetland rice agriculture-biogeochemistry and environmental controls in projected changing environment. In Advances in crop environment interaction (pp. 51–85). Springer. https://doi.org/10.1007/978-981-13-1861-0_3

  • Samal, S. K., Rao, K. K., Poonia, S. P., Kumar, R., Mishra, J. S., Prakash, V., Mondal, S., Dwivedi, S. K., Bhatt, B. P., Naik, S. K., Choubey, A. K., & McDonald, A. (2017). Evaluation of long-term conservation agriculture and crop intensification in rice–wheat rotation of Indo–Gangetic Plains of South Asia: Carbon dynamics and productivity. European Journal of Agronomy, 90, 198–208.

    Google Scholar 

  • Schäffer, B., Mueller, T. L., Stauber, M., Müller, R., Keller, M., & Schulin, R. (2008). Soil and macro-pores under uniaxial compression. II. Morphometric analysis of macro-pore stability in undisturbed and repacked soil. Geoderma, 146, 175–182.

    Article  Google Scholar 

  • Schjønning, P., Lamandé, M., Berisso, F. E., Simojoki, A., Alakukku, L., & Andreasen, R. R. (2013). Gas diffusion, non-Darcy air permeability, and computed tomography images of a clay subsoil affected by compaction. Soil Science Society of America Journal, 77, 1977–1990.

    Article  Google Scholar 

  • Schwartz, R. C., Evett, S. R., & Unger, P. W. (2003). Soil hydraulic properties of cropland compared with reestablished and native grassland. Geoderma, 116, 47–60.

    Article  Google Scholar 

  • Shahid, M., Nayak, A. K., Tripathi, R., Mohanty, S., Chatterjee, D., Kumar, A., Bhaduri, D., Guru, P., Munda, S., Kumar, U., Khanam, R., Mondal, B., Bhattacharyya, P., Saha, S., Panda, B. B., & Nayak, P. K. (2018). Resource conservation technologies under rice-based system in eastern India. In H. Pathak, A. K. Nayak, M. Jena, O. N. Singh, P. Samal & S. G. Sharma (Eds.), Rice research for enhancing productivity, profitability and climate resilience (pp. 290–306). ICAR-National Rice Research Institute, Cuttack, Odisha, India, p. x+542.

    Google Scholar 

  • Shahid, M., Nayak, A. K., Munda, S., Tripathi, R., Panda, B. B., Guru, P., Khanam, R., Saha, S., Lal, B., Gautam, P., Chatterjee, D., & Nayak, P. K. (2021). Conservation agriculture technology for rice-green gram cropping system in Eastern India. Technology Bulletin. ICAR-National Rice Research Institute Cuttack India, 8p.

    Google Scholar 

  • Sharma, N. K., Singh, R. J., Mandal, D., Kumar, A., Alam, N. M., & Keesstra, S. (2017). Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India. Agriculture, Ecosystems & Environment, 247, 43–53.

    Article  Google Scholar 

  • Silburn, D. M., Freebairn, D. M., & Rattray, D. J. (2007). Tillage and the environment in sub-tropical Australia—Tradeoffs and challenges. Soil Tillage and Research, 97, 306–317.

    Article  Google Scholar 

  • Singh, A., Phogat, V. K., Dahiya, R., & Batra, S. D. (2014). Impact of long-term zero till wheat on soil physical properties and wheat productivity under rice–wheat cropping system. Soil Tillage and Research, 140, 98–105.

    Article  Google Scholar 

  • Sithole, N. J., Magwaza, L. S., & Mafongoya, P. L. (2016). Conservation agriculture and its impact on soil quality and maize yield: A South African perspective. Soil Tillage and Research, 162, 55–67.

    Article  Google Scholar 

  • Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage and Research, 79, 7–31.

    Article  Google Scholar 

  • Six, J. ΑΕΤ, Elliott, E. T., & Paustian, K. (2000b). Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 32, 2099–2103.

    Article  CAS  Google Scholar 

  • Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000a). Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal, 64, 681–689.

    Article  CAS  Google Scholar 

  • Soane, B. D., & van Ouwerkerk, C. (1994). Soil compaction problems in world agriculture. In Developments in Agricultural Engineering, 11, 1–21.

    Article  Google Scholar 

  • Spedding, T. A., Hamel, C., Mehuys, G. R., & Madramootoo, C. A. (2004). Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology & Biochemistry, 36, 499–512.

    Article  CAS  Google Scholar 

  • Strudley, M. W., Green, T. R., & Ascough, J. C., II. (2008). Tillage effects on soil hydraulic properties in space and time: State of the science. Soil till Res, 99, 4–48.

    Article  Google Scholar 

  • Su, Z., Zhang, J., Wu, W., Cai, D., Lv, J., Jiang, G., Huang, J., Gao, J., Hartmann, R., & Gabriels, D. (2007). Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agricultural Water Management, 87, 307–314.

    Article  Google Scholar 

  • Swain, C. K., Nayak, A. K., Bhattacharyya, P., Chatterjee, D., Chatterjee, S., Tripathi, R., Singh, N. R., & Dhal, B. (2018). Greenhouse gas emissions and energy exchange in wet and dry season rice: Eddy covariance-based approach. Environmental Monitoring and Assessment, 190(7), 1–7. https://doi.org/10.1007/s10661-018-6805-1

    Article  CAS  Google Scholar 

  • Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., & Beerling, D. J. (2009). Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiology, 7, 171–191.

    Article  CAS  Google Scholar 

  • Thorup-Kristensen, K. (2011). Strick Danish regulations on nitrogen use and how understanding vegetable crop root growth may help us improve nitrogen use efficiency. In: IV Jornadas Fertilización SECH. Sociedad Española de Ciencias. Hortícolas, Castelldefels (Barcelona), Spain. pp. 4–7.

    Google Scholar 

  • Toliver, D. K., Larson, J. A., Roberts, R. K., English, B. C., De La Torre Ugarte, D. G., & West, T. O. (2012). Effects of no-till on yields as influenced by crop and environmental factors. Agronomy Journal, 104, 530–541.

    Article  Google Scholar 

  • Tolon-Becerra, A., Tourn, M., Botta, G. F., & Lastra-Bravo, X. (2011). Effects of different tillage regimes on soil compaction, maize (Zea mays L.) seedling emergence and yields in the eastern Argentinean Pampas region. Soil Tillage Research, 117, 184–190.

    Article  Google Scholar 

  • Tracy, S. R., Black, C. R., Roberts, J. A., & Mooney, S. J. (2013). Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.). Environmental and Experimental Botany, 91, 38–47.

    Article  Google Scholar 

  • Tripathi, R., Nayak, A. K., Lal, B., Shahid, M., Gautam, P., Munda, S., Mohanty, S., Guru, P. K., Khanam, R., Panda, B. B., Satapathy, B. S., Chatterjee, D., Nayak, P. K., Kumar, A., Kumar, U., & Mohapatra, S. D. (2021) Conservation agriculture based on rice-maize cropping system for Eastern India. Technology Bulletin. ICAR-National Rice Research Institute Cuttack India, 6p.

    Google Scholar 

  • Triplett, G. B., & Dick, W. A. (2008) No-tillage crop production: A revolution in agriculture!. Agronomy Journal, 100(Supplement_3), S–153.

    Google Scholar 

  • UNFCC. (2016). United Nations Framework Convention on Climate Change. Views on issues relating to agriculture. Subsidiary Body for Scientific and Technological Advice Forty-fourth session Bonn, 16–26 May 2016, https://unfccc.int/resource/docs/2016/sbsta/eng/misc01.pdf. Accessed 26 July 2018.

  • United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. United Nations.

    Google Scholar 

  • Van Wie, J. B., Adam, J. C., & Ullman, J. L. (2013). Conservation tillage in dryland agriculture impacts watershed hydrology. Journal of Hydrology, 483, 26–38.

    Article  Google Scholar 

  • Victoria, R., Banwart, S., Black, H., Ingram, J., Joosten, H., Milne, E., Nollemeyer, E., & Baskin, Y. (2012). The benefits of soil carbon. Foresight Chapter in UNEP Yearbook, 2012, 19–33.

    Google Scholar 

  • Villamil, M. B., & Nafziger, E. D. (2015). Corn residue, tillage, and nitrogen rate effects on soil carbon and nutrient stocks in Illinois. Geoderma, 253, 61–66.

    Article  Google Scholar 

  • Wahl, N. A., Bens, O., Buczko, U., Hangen, E., & Hüttl, R. F. (2004). Effects of conventional and conservation tillage on soil hydraulic properties of a silty-loamy soil. Physics and Chemistry of the Earth, Parts A/B/C, 29, 821–829.

    Article  Google Scholar 

  • Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341, 508–513.

    Article  CAS  Google Scholar 

  • Whitmore, A. P., Whalley, W. R., Bird, N. R., Watts, C. W., & Gregory, A. S. (2011). Estimating soil strength in the rooting zone of wheat. Plant and Soil, 339, 363–375.

    Article  CAS  Google Scholar 

  • Yadav, G. S., Lal, R., Babu, S., Datta, M., Meena, R. S., Patil, S. B., & Singh, R. (2019a). Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. Agriculture, Ecosystems & Environment, 275, 81–92.

    Article  Google Scholar 

  • Yadav, G. S., Lal, R., Meena, R. S., Babu, S., Das, A., Bhowmik, S. N., Datta, M., Layek, J., & Saha, P. (2019b). Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecological Indicators, 105, 303–315.

    Article  CAS  Google Scholar 

  • Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528(7580), 51–59.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wang, S., Wang, H., Wang, R., Wang, X., & Li, J. (2018). Crop yield and soil properties of dryland winter wheat-spring maize rotation in response to 10-year fertilization and conservation tillage practices on the Loess Plateau. Field Crops Research, 225, 170–179.

    Article  Google Scholar 

  • Zida, Z., Ouédraogo, E., Mando, A., & Stroosnijder, L. (2011). Termite and earthworm abundance and taxonomic richness under long-term conservation soil management in Saria, Burkina Faso, West Africa. Applied Soil Ecology, 51, 121–129.

    Article  Google Scholar 

  • Zuber, S. M., & Villamil, M. B. (2016). Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology & Biochemistry, 97, 176–187.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Saha, S., Das, S.R., Chatterjee, D. (2024). Impact of Conservation Agriculture on Soil Health and Environmental Sustainability. In: Pathak, H., Chatterjee, D., Saha, S., Das, B. (eds) Climate Change Impacts on Soil-Plant-Atmosphere Continuum. Advances in Global Change Research, vol 78. Springer, Singapore. https://doi.org/10.1007/978-981-99-7935-6_10

Download citation

Publish with us

Policies and ethics