Skip to main content

Part of the book series: Modern Antenna ((MA))

  • 175 Accesses

Abstract

The architecture of the phased array antennas has undergone a steady evolution over the years [1,2,3]. In the first generation of phased array antennas, as shown in Fig. 2.1, the antenna aperture was divided into a large number of antenna elements to realize beam agility, each with an electronically controlled phase shifter. However, the centralized high-power transmit and receive amplifiers were still used. In the 1980s, thanks to advancements in highly reliable solid state devices and MMIC technologies, solid-state transmit amplifiers were distributed and moved much closer to the antenna elements. As shown in Fig. 2.2, all the transmit amplifiers, low-noise receive amplifiers, phase shifters, and attenuators are integrated together and known as transmit/receive (T/R) module. Analog microwave components are used to realize analog beamforming. It has the adavantages of wide bandwidth and low power consumption. However, connections and interfaces for this type of beamforming are very complicated, strict microwave parameters and specifications are required. To form M simultaneous beams, the phase shifters and analog beamformers must be implemented in M times. Thus phased array antennas with analog beamforming were inherently constrained by the front-end beamforming electronics. As the number of beams increases, so does the analog components and the cost of a phased array antenna. As a result, it’s very difficult to generate multiple independent beams by analog beamforming in actual application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.S. Herd, M.D. Conway, The evolution to modern phased array architectures. Proc. IEEE 104(3), 519–529 (2016)

    Article  Google Scholar 

  2. C. Fulton, M. Yeary, D. Thompson, J. Lake, A. Mitchell, Digital phased arrays: challenges and opportunities. Proc. IEEE 104(3), 487–503 (2016)

    Article  Google Scholar 

  3. S.H. Talisa, K.W. O’Haver, T.M. Comberiate, M.D. Sharp, O.F. Somerlock, Benefits of digital phased array radars. Proc. IEEE 104(3), 530–543 (2016)

    Article  Google Scholar 

  4. M. Mirmozafari, G. Zhang, C. Fulton, R.J. Doviak, Dual-polarization antennas with high isolation and polarization purity: a review and comparison of cross-coupling mechanisms. IEEE Antennas Propag. Mag. 61(1), 50–63 (2019)

    Article  Google Scholar 

  5. S.X. Ta, I. Park, R.W. Ziolkowski, Crossed dipole antennas: a review. IEEE Antennas Propag. Mag. 57(5), 107–122 (2015)

    Article  Google Scholar 

  6. C.-H. Lee, S.-Y. Chen, P. Hsu, Isosceles triangular slot antenna for broadband dual polarization applications. IEEE Trans. Antennas Propag. 57(10), 3347–3351 (2009)

    Article  Google Scholar 

  7. B.A. Kopp, M. Borkowski, G. Jerinic, Transmit/receive modules. IEEE Trans. Microw. Theory Techn. 50(3), 827–834 (2002)

    Article  Google Scholar 

  8. S. Rathod, K. Sreenivasulu, K.S. Beenamole, K.P. Ray, Evolutionary trends in transmit/receive module for active phased array radars. Def. Sci. J. 68(6), 553–559 (2018)

    Article  Google Scholar 

  9. A. Chakraborty, B. Gupta, Paradigm phase shift: RF MEMS phase shifters: an overview. IEEE Microw. Mag. 18(1), 22–41 (2017)

    Article  Google Scholar 

  10. R. Rotman, M. Tur, L. Yaron, True time delay in phased arrays. Proc. IEEE 104(3), 504–518 (2016)

    Article  Google Scholar 

  11. P.-I. Mak, S.-P. U, R.P. Martins, Transceiver architecture selection: review, state-of-the-art survey and case study. IEEE Circuits Syst. Mag. 7(2), 6–25 (2007)

    Google Scholar 

  12. D. Siafarikas, J.L. Volakis, Toward direct RF sampling: implications for digital communications. IEEE Microw. Mag. 21(9), 43–52 (2020)

    Article  Google Scholar 

  13. B. Murmann, The race for the extra decibel: a brief review of current ADC performance trajectories. IEEE Solid-State Circuits Mag. 7(3), 58–66 (2015)

    Google Scholar 

  14. B. Murmann, ADC performance survey 1997–2021. http://web.stanford.edu/~murmann/adcsurvey.html

  15. P. Rocca, A. Morabito, Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications. IEEE Trans. Antennas Propag. 63(3), 1048–1058 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Kreng, M. Sue, S. Do, Y. Krikorian, S. Raghavan, Telemetry, tracking, and command link performance using the USB/STDN waveform. IEEE Aerospace Conf. 2007, 1–15 (2007)

    Google Scholar 

  17. J.B. Berner, S.H. Bryant, P.W. Kinman, Range measurement as practiced in the deep space network. Proc. IEEE 95(11), 2202–2214 (2007)

    Article  Google Scholar 

  18. S. Hosseinizadeh, F. Tan, S. Moosania, Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins. Appl. Therm. Eng. 31, 3827–3838 (2011)

    Article  Google Scholar 

  19. Y. Wang, C. Wang, P. Lian, et al., Effect of temperature on electromagnetic performance of active phased array antenna. Electronics 9, article no. 1211 (2020)

    Google Scholar 

  20. Y.E. Nikolaenko, A.V. Baranyuk, S.A. Reva, E.N. Pismennyi, F.F. Dubrovka, Numerical simulation of the thermal and hydraulic characteristics of the liquid heat exchanger of the APAA transmitter-Creceiver module. Therm. Sci. Eng. Progress 17, Article no. 100499, 1–11 (2020)

    Google Scholar 

  21. J. Nagar, D.H. Werner, Multiobjective optimization for electromagnetics and optics: an introduction and tutorial based on real-world applications. IEEE Antennas Propag. Mag. 60(6), 58–71 (2018)

    Article  Google Scholar 

  22. R.L. Haupt, An introduction to genetic algorithms for electromagnetics. IEEE Antennas Propag. Mag. 37(2), 7–15 (1995)

    Article  MathSciNet  Google Scholar 

  23. J. Robinson, Y. Rahmat-Samii, Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Nanbo, Y. Rahmat-Samii, Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multi-objective implementations. IEEE Trans. Antennas Propag. 55(3), 556–567 (2007)

    Article  Google Scholar 

  25. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2009)

    MATH  Google Scholar 

  26. H. Lebret, S. Boyd, Antenna array pattern synthesis via convex optimization. IEEE Trans. Signal Process. 45(3), 526–532 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolong He .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, G., Gao, X., Zhang, R., Sun, L., Zhou, H. (2024). Phased Array Antenna Basics. In: Multibeam Phased Array Antennas as Satellite Constellation Ground Station. Modern Antenna. Springer, Singapore. https://doi.org/10.1007/978-981-99-7910-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7910-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7909-7

  • Online ISBN: 978-981-99-7910-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics