Skip to main content

Metaheuristic Optimized BiLSTM Univariate Time Series Forecasting of Gold Prices

  • Conference paper
  • First Online:
Data Science and Applications (ICDSA 2023)

Abstract

It has always been a well-known fact that gold never loses its value. This makes gold a favorite for long-term investments both for individuals as well as countries. Being able to anticipate changes in gold price can be a very lucrative. However, as prices are influenced by many complex factors, casting accurate forecasts is not an easy task. The development of a robust and reliable method for casting accurate forecasts is evident. This work proposes an approach revolving around bidirectional long short-term memory neural networks optimized via metaheuristic algorithms to ameliorate performance. Additionally, a modified version of the well-known moth flame optimizer (MFO) algorithm is introduced for this purpose. To help the network deal with subtle complexities as well as violent variations and noise associated with market data, a decomposition techniques is applied to the univariate time series prior to network processing. The proposed approach and introduced algorithm have been evaluated on realistic data, and their performance has been collated to several trailblazing algorithms applied to the same task. The approach has shown promising results attaining the highest overall objective function scores, with overall MSE value of 0.000643.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 241.99
Price includes VAT (Austria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://in.investing.com/commodities/gold-mini.

References

  1. AlHosni, N., Jovanovic, L., Antonijevic, M., Bukumira, M., Zivkovic, M., Strumberger, I., Mani, J. P., & Bacanin, N. (2022). The xgboost model for network intrusion detection boosted by enhanced sine cosine algorithm. In Third international conference on image processing and capsule networks: ICIPCN 2022 (pp. 213–228). Springer.

    Google Scholar 

  2. Bacanin, N., Jovanovic, L., Zivkovic, M., Kandasamy, V., Antonijevic, M., Deveci, M., & Strumberger, I. (2023). Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks. Information Sciences, 642, 119122.

    Google Scholar 

  3. Dragomiretskiy Konstantin, Z. D. (2013). Variational mode decomposition. IEEE Transactions on Signal Processing, 10.

    Google Scholar 

  4. Gajevic, M., Milutinovic, N., Krstovic, J., Jovanovic, L., Marjanovic, M., & Stoean, C. (2023). Artificial neural network tuning by improved sine cosine algorithm for healthcare 4.0. In Proceedings of the 1st international conference on innovation in information technology and business (ICIITB 2022) (Vol. 104, p. 289). Springer Nature.

    Google Scholar 

  5. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  6. Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN-LSTM model for gold price time-series forecasting. Neural Computing & Applications, 32, 17351–17360 (2020).

    Google Scholar 

  7. Jin, N., Yang, F., Mo, Y., Zeng, Y., Zhou, X., Yan, K., & Ma, X. (2022). Highly accurate energy consumption forecasting model based on parallel LSTM neural networks. Advanced Engineering Informatics, 51, 101442.

    Google Scholar 

  8. Jovanovic, L., Bacanin, N., Zivkovic, M., Antonijevic, M., Jovanovic, B., Sretenovic, M. B., & Strumberger, I. (2023). Machine learning tuning by diversity oriented firefly metaheuristics for industry 4.0. Expert Systems, e13293.

    Google Scholar 

  9. Jovanovic, L., Djuric, M., Zivkovic, M., Jovanovic, D., Strumberger, I., Antonijevic, M., Budimirovic, N., & Bacanin, N. (2023). Tuning xgboost by planet optimization algorithm: An application for diabetes classification. In Proceedings of fourth international conference on communication, computing and electronics systems: ICCCES 2022 (pp. 787–803). Springer.

    Google Scholar 

  10. Jovanovic, L., Jovanovic, D., Bacanin, N., Jovancai Stakic, A., Antonijevic, M., Magd, H., Thirumalaisamy, R., & Zivkovic, M. (2022). Multi-step crude oil price prediction based on LSTM approach tuned by salp swarm algorithm with disputation operator. Sustainability, 14(21), 14616.

    Article  Google Scholar 

  11. Jovanovic, L., Jovanovic, G., Perisic, M., Alimpic, F., Stanisic, S., Bacanin, N., Zivkovic, M., & Stojic, A. (2023). The explainable potential of coupling metaheuristics-optimized-xgboost and shap in revealing vocs’ environmental fate. Atmosphere, 14(1), 109.

    Article  Google Scholar 

  12. Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.

    Article  Google Scholar 

  13. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE.

    Google Scholar 

  14. Madziwa, L., Pillalamarry, M., & Chatterjee, S. (2022). Gold price forecasting using multivariate stochastic model. The International Journal of Minerals Policy and Economics, 82, 102544.

    Google Scholar 

  15. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.

    Article  Google Scholar 

  16. Mirjalili, S., & Mirjalili, S. (2019). Genetic algorithm. In Evolutionary algorithms and neural networks: Theory and applications (pp. 43–55).

    Google Scholar 

  17. Petrovic, A., Jovanovic, L., Zivkovic, M., Bacanin, N., Budimirovic, N., & Marjanovic, M. (2023). Forecasting bitcoin price by tuned long short term memory model. In 1st International conference on innovation in information technology and business (ICIITB 2022) (pp. 187–202). Atlantis Press.

    Google Scholar 

  18. Pinyi, Z, & Ci, B. (2020). Deep belief network for gold price forecasting. Neural Networks, 69, 101806.

    Google Scholar 

  19. Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. (2007). Quasi-oppositional differential evolution. In 2007 IEEE congress on evolutionary computation (pp. 2229–2236). IEEE.

    Google Scholar 

  20. Salb, M., Jovanovic, L., Zivkovic, M., Tuba, E., Elsadai, A., & Bacanin, N. (2022). Training logistic regression model by enhanced moth flame optimizer for spam email classification. In Computer networks and inventive communication technologies: Proceedings of fifth ICCNCT 2022 (pp. 753–768). Springer.

    Google Scholar 

  21. Sharma, A., Nanda, S. J., & Vijay, R. K. (2021). A binary NSGA-II model for de-clustering seismicity of turkey and Chile. In 2021 IEEE congress on evolutionary computation (CEC) (pp. 981–988). IEEE.

    Google Scholar 

  22. Stankovic, M., Bacanin, N., Zivkovic, M., Jovanovic, L., Mani, J., & Antonijevic, M. (2022). Forecasting ethereum price by tuned long short-term memory model. In 2022 30th telecommunications forum (TELFOR) (pp. 1–4). IEEE.

    Google Scholar 

  23. Stankovic, M., Jovanovic, L., Bacanin, N., Zivkovic, M., Antonijevic, M., & Bisevac, P. (2023). Tuned long short-term memory model for ethereum price forecasting through an arithmetic optimization algorithm. In Innovations in bio-inspired computing and applications: Proceedings of the 13th international conference on innovations in bio-inspired computing and applications (IBICA 2022) held during December 15–17, 2022 (pp. 327–337). Springer.

    Google Scholar 

  24. Strumberger, I., Bezdan, T., Ivanovic, M., & Jovanovic, L. (2021). Improving energy usage in wireless sensor networks by whale optimization algorithm. In 2021 29th telecommunications forum (TELFOR) (pp. 1–4). IEEE.

    Google Scholar 

  25. Vijay, R. K., & Nanda, S. J. (2019). A quantum grey wolf optimizer based declustering model for analysis of earthquake catalogs in an ergodic framework. Journal of Computational Science, 36, 101019.

    Google Scholar 

  26. Wang, H., Zhang, Y., Liang, J., & Liu, L. (2023). DAFA-BILSTM: Deep autoregression feature augmented bidirectional LSTM network for time series prediction. Neural Networks, 157, 240–256.

    Article  Google Scholar 

  27. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  28. Zhang, S., Zheng, D., Hu, X., & Yang, M. (2015). Bidirectional long short-term memory networks for relation classification. In Proceedings of the 29th Pacific Asia conference on language, information and computation (pp. 73–78).

    Google Scholar 

  29. Zivkovic, M., Jovanovic, L., Ivanovic, M., Bacanin, N., Strumberger, I., & Joseph, P. M. (2022). Xgboost hyperparameters tuning by fitness-dependent optimizer for network intrusion detection. In Communication and intelligent systems: Proceedings of ICCIS 2021 (pp. 947–962). Springer.

    Google Scholar 

  30. Zivkovic, M., Jovanovic, L., Ivanovic, M., Krdzic, A., Bacanin, N., & Strumberger, I. (2022). Feature selection using modified sine cosine algorithm with COVID-19 dataset. In Evolutionary computing and mobile sustainable networks: Proceedings of ICECMSN 2021 (pp. 15–31). Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Bacanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jovanovic, A., Dogandzic, T., Jovanovic, L., Kumpf, K., Zivkovic, M., Bacanin, N. (2024). Metaheuristic Optimized BiLSTM Univariate Time Series Forecasting of Gold Prices. In: Nanda, S.J., Yadav, R.P., Gandomi, A.H., Saraswat, M. (eds) Data Science and Applications. ICDSA 2023. Lecture Notes in Networks and Systems, vol 818. Springer, Singapore. https://doi.org/10.1007/978-981-99-7862-5_17

Download citation

Publish with us

Policies and ethics