Skip to main content

Die Rolle der naturinspirierten Intelligenz bei der genomischen Diagnose antimikrobieller Resistenzen

  • Chapter
  • First Online:
Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik

Zusammenfassung

Die aufkommende antimikrobielle Resistenz (AMR) gegenüber aktuellen antimikrobiellen Wirkstoffen ist das vordergründige öffentliche Gesundheitsproblem, das weiterhin Herausforderungen bei der Auswahl von Therapieschemata zur Behandlung von Infektionskrankheiten stellt. Die bakteriellen Krankheitserreger entwickeln AMR durch zwei Arten von Mechanismen, einer ist die intrinsische Resistenz aufgrund von Mutationen in chromosomalen Genen und der andere ist die extrinsische Resistenz durch den Erwerb von externen, plasmidvermittelten Genen. Der Schlüssel zur Diagnose von AMR liegt in der DNA-Sequenz von Bakterien, die die Resistenz verleihenden Mechanismen beherbergen. Die Fortschritte in der Technologie haben eine Fülle von Genomdaten generiert, die zur Identifizierung von diagnostischen Markern genutzt werden können. Darüber hinaus hat das maschinelle Lernen (ML) neue Möglichkeiten geschaffen, um Gesundheitsprobleme mit Hilfe von bioinformatischen Techniken signifikant zu lösen. In der letzten Dekade hat die naturinspirierte Intelligenz (NII) die Entwicklung von maschinellen Lernwerkzeugen zur Diagnose von antibakteriellen Resistenzgenmustern unterstützt. Die erfolgreiche Implementierung dieser Algorithmen, insbesondere bei komplexen und verwickelten Problemen, zeigt ihre Bedeutung in der künstlichen Intelligenz (KI). Diese Übersicht behandelt die Rolle der NII bei der Bekämpfung von Infektionskrankheiten mit Hilfe von Genomdaten sowie die zukünftige Perspektive ihrer Verwendung bei der Informationsverarbeitung, Entscheidungsfindung und Optimierung für die Diagnose von AMR. Die Schlüsselprobleme bei der praktischen Anwendung von NII mit Hilfe von genomischen Markern und mikrobiologischen Parametern werden ausführlich diskutiert. Dies wird dazu beitragen, die Lücke zwischen theoretischen Forschern, medizinischen Praktikern, Fachleuten und Ingenieuren, die an der Verwendung von NII zur Lösung von AMR interessiert sind, zu schließen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aderhold A, Diwold K, Scheidler A, Middendorf M (2010) Artificial bee colony optimization: a new selection scheme and its performance BT. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin Heidelberg, S 283–294. https://doi.org/10.1007/978-3-642-12538-6_24

  • Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Charowhas C, Clark K, DiCuccio M, Dondoshansky I, Feolo M, Funk K, Geer LY, Gorelenkov V, Hlavina W, … Zbicz,K (2017) Database resources of the national center for biotechnology information. Nucleic Acids Res 45(D1). https://doi.org/10.1093/nar/gkw1071

  • Alaloul WS (2020) Data processing using artificial neural networks In Qureshi AH, Harkut DG (Hrsg), p ch 6. IntechOpen. https://doi.org/10.5772/intechopen.91935

  • Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran HK, Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, … McArthur AG (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48(D1). https://doi.org/10.1093/nar/gkz935

  • Allali I, Arnold JW, Roach J, Cadenas MB, Butz N, Hassan HM, Koci M, Ballou A, Mendoza M, Ali R, Azcarate-Peril MA (2017) A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiology 17(1). https://doi.org/10.1186/s12866-017-1101-8

  • Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L (2018) DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6(1). https://doi.org/10.1186/s40168-018-0401-z

  • Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Seung HS (2017) Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33(15). https://doi.org/10.1093/bioinformatics/btx180

  • Avershina E, Sharma P, Taxt AM, Singh H, Frye SA, Paul K, Kapil A, Naseer U, Kaur P, Ahmad R (2021) AMR-Diag: neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae. Comput Struct Biotechnol J, 19. https://doi.org/10.1016/j.csbj.2021.03.027

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5). https://doi.org/10.1089/cmb.2012.0021

  • Bharti V, Biswas B, Shukla KK (2020) Recent trends in nature inspired computation with applications to deep learning. In: Proceedings of the confluence 2020 – 10th international conference on cloud computing, data science and engineering. https://doi.org/10.1109/Confluence47617.2020.9057841

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30(15). https://doi.org/10.1093/bioinformatics/btu170

  • Boolchandani M, D’Souza AW, Dantas G (2019) Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20(6). https://doi.org/10.1038/s41576-019-0108-4

  • Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, … Aarestrup FM (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75(12). https://doi.org/10.1093/jac/dkaa345

  • Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, De Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, … Iqbal Z (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6. https://doi.org/10.1038/ncomms10063

  • Brownlee J (2011) Clever algorithms: nature-inspired programming recipes. Jason Brownlee

    Google Scholar 

  • Chernov VM, Chernova OA, Mouzykantov AA, Lopukhov LL, Aminov RI (2019) Omics of antimicrobials and antimicrobial resistance. Expert Opin Drug Discov 14(5):455–468. https://doi.org/10.1080/17460441.2019.1588880

  • Dadgostar P (2019) Antimicrobial resistance: implications and costs. Infect Drug Resist 12. https://doi.org/10.2147/IDR.S234610

  • Dahiya S, Malik R, Sharma P, Sashi A, Lodha R, Kabra SK, Sood S, Das BK, Walia K, Ohri VC, Kapil A (2019) Current antibiotic use in the treatment of enteric fever in children. Indian J Med Res 149(2). https://doi.org/10.4103/ijmr.IJMR_199_18

  • Dahiya S, Sharma P, Kumari B, Pandey S, Malik R, Manral N, Veeraraghavan B, Pragasam AK, Ray P, Gautam V, Sistla S, Parija SC, Walia K, Ohri V, Das BK, Sood S, Kapil A (2017) Characterisation of antimicrobial resistance in Salmonellae during 2014–2015 from four centres across India: An ICMR antimicrobial resistance surveillance network report. Indian J Med Microbiol 35(1). https://doi.org/10.4103/ijmm.IJMM_16_382

  • Darwish A (2018) Bio-inspired computing: algorithms review, deep analysis, and the scope of applications. Future Comput Inf 3(2). https://doi.org/10.1016/j.fcij.2018.06.001

  • Davis JJ, Boisvert S, Brettin T, Kenyon RW, Mao C, Olson R, Overbeek R, Santerre J, Shukla M, Wattam AR, Will R, Xia F, Stevens R (2016) Antimicrobial resistance prediction in PATRIC and RAST. Sci Rep 6. https://doi.org/10.1038/srep27930

  • Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, Tyson GH, Zhao S, Hsu C-H, McDermott PF, Tadesse DA, Morales C, Simmons M, Tillman G, Wasilenko J, Folster JP, Klimke W (2019) Using the NCBI AMRFinder tool to determine antimicrobial resistance genotype-phenotype correlations within a collection of NARMS isolates. BioRxiv, 550707. https://doi.org/10.1101/550707

  • Gelbukh A, Espinoza FC, Galicia-Haro SN (2014) Nature-inspired computation and machine learning. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 8857(September).

    Google Scholar 

  • Giulieri SG, Tong SYC, Williamson DA (2020) Using genomics to understand meticillin- and vancomycin-resistant Staphylococcus aureus infections. Microb Genomics 6(1). https://doi.org/10.1099/mgen.0.000324

  • Gorrie C, Higgs C, Carter G, Stinear TP, Howden B (2019) Genomics of vancomycin-resistant Enterococcus faecium. Microb Genomics 5(7). https://doi.org/10.1099/mgen.0.000283

  • Hendriksen RS, Bortolaia V, Tate H, Tyson GH, Aarestrup FM, McDermott PF (2019) Using genomics to track global antimicrobial resistance. Front Public Health 7. https://doi.org/10.3389/fpubh.2019.00242

  • Her H-L, Wu Y-W (2018) A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics 34(13):i89–i95. https://doi.org/10.1093/bioinformatics/bty276

  • Holder LB, Haque MM, Skinner MK (2017) Machine learning for epigenetics and future medical applications. Epigenetics 12(7). https://doi.org/10.1080/15592294.2017.1329068

  • Jamal S, Khubaib M, Gangwar R, Grover S, Grover A, Hasnain SE (2020) Artificial intelligence and machine learning based prediction of resistant and susceptible mutations in mycobacterium tuberculosis. Sci Rep 10(1):5487. https://doi.org/10.1038/s41598-020-62368-2

  • Jha M, Kawale A, Verma CK (2017) Interpretable model for antibiotic resistance prediction in bacteria using deep learning. Biomed Pharmacol J 10(4). https://doi.org/10.13005/bpj/1316

  • Joshi N, Srivastava SS (2011) Parallelization of Velvet, “a de novo genome sequence assembler”. Sci Technol

    Google Scholar 

  • Kang Q, An J, Wang L, Wu QDi (2012) Nature-inspired computation: a survey. Tien Tzu Hsueh Pao/Acta Electronica Sinica 40(3). https://doi.org/10.3969/j.issn.0372-2112.2012.03.023

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J Global Optim 39(3). https://doi.org/10.1007/s10898-007-9149-x

  • Katiyar A, Sharma P, Dahiya S, Singh H, Kapil A, Kaur P (2020) Genomic profiling of antimicrobial resistance genes in clinical isolates of Salmonella Typhi from patients infected with Typhoid fever in India. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-64934-0

  • Kaur A, Ruhela A, Sharma P, Khariwal H, Seth S, Kumar A, Kapil A, Elangovan R, Kalyanasundaram D (2019) Simultaneous and high sensitive detection of Salmonella typhi and Salmonella paratyphi a in human clinical blood samples using an affordable and portable device. Biomed Microdevices 21(4). https://doi.org/10.1007/s10544-019-0441-6

  • Khan ZA, Siddiqui MF, Park S (2019) Current and emerging methods of antibiotic susceptibility testing. Diagnostics 9 (2). https://doi.org/10.3390/diagnostics9020049

  • Kono N, Arakawa K (2019) Nanopore sequencing: review of potential applications in functional genomics. Develop Growth Differ 61(5). https://doi.org/10.1111/dgd.12608

  • Köser CU, Ellington MJ, Peacock SJ (2014) Whole-genome sequencing to control antimicrobial resistance. Trends Genet 30(9). https://doi.org/10.1016/j.tig.2014.07.003

  • Kumar M, Dahiya S, Sharma P, Sharma S, Singh TP, Kapil A, Kaur P (2015) Structure based in silico analysis of quinolone resistance in clinical isolates of Salmonella Typhi from India. PLoS ONE 10(5). https://doi.org/10.1371/journal.pone.0126560

  • Kumar Tripathi M, Kumar Shrivastava S, Karthikeyan S, Sinha D, Nath A (2021) Application of machine learning and molecular modeling in drug discovery and cheminformatics. Adv AI Tech Appl Bioinform. https://doi.org/10.1201/9781003126164-10

  • Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, … Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet (London, England) 357(9264):1225–1240. https://doi.org/10.1016/s0140-6736(00)04403-2

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Meth 9(4). https://doi.org/10.1038/nmeth.1923

  • Lapidus AL (2019) Genome sequence databases: sequencing and assembly. Encyclopedia Microbiol. https://doi.org/10.1016/B978-0-12-801238-3.02495-8

  • Lau HJ, Lim CH, Foo SC, Tan HS (2021) The role of artificial intelligence in the battle against antimicrobial-resistant bacteria. Curr Genet 67(3):421–429. https://doi.org/10.1007/s00294-021-01156-5

  • Layer F, Ghebremedhin B, Moder KA, König W, König B (2006) Comparative study using various methods for identification of Staphylococcus species in clinical specimens. J Clin Microbiol 44(8). https://doi.org/10.1128/JCM.00226-06

  • Lee C-R, Lee JH, Park KS, Jeon JH, Kim YB, Cha C-J, Jeong BC, Lee SH (2017) Antimicrobial resistance of Hypervirulent Klebsiella pneumoniae: epidemiology, Hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol 7:483. https://doi.org/10.3389/fcimb.2017.00483

  • Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tárraga A, Cheng Y, Cleland I, Faruque N, Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N, Plaister S, Radhakrishnan R, Reddy K, Sobhany S, Hoopen PT, Vaughan R, … Cochrane G (2011) The European nucleotide archive. Nucleic Acids Res 39(SUPPL. 1). https://doi.org/10.1093/nar/gkq967

  • Li C, Chan F (2011) Complex-fuzzy adaptive image restoration—an artificial-bee-colony-based learning approach. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 6592 LNAI (PART 2). https://doi.org/10.1007/978-3-642-20042-7_10

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25(14). https://doi.org/10.1093/bioinformatics/btp324

  • Liao M, Tong T, Zong Y, Zhou X, Cheng L, Huang R, Ren B, Alterovitz G (2019) Application of omics and bioinformatics tools in streptococcus research. Curr Issues Mol Biol 32:327–376. https://doi.org/10.21775/cimb.032.327

  • Liu B, Pop M (2009) ARDB – antibiotic resistance genes database. Nucleic Acids Res 37(SUPPL. 1). https://doi.org/10.1093/nar/gkn656

  • Liu Z, Deng D, Lu H, Sun J, Lv L, Li S, Peng G, Ma X, Li J, Li Z (2020) Evaluation of machine learning models for predicting antimicrobial resistance of Actinobacillus pleuropneumoniae from whole genome sequences. Front Microbiol 11:48

    Google Scholar 

  • Lupolova N, Lycett SJ, Gally DL (2019) A guide to machine learning for bacterial host attribution using genome sequence data. Microb Genomics 5(12)

    Google Scholar 

  • Luz CF, van Niekerk JM, Keizer J, Beerlage-de Jong N, Braakman-Jansen LMA, Stein A, Sinha B, van Gemert-Pijnen JEWC, Glasner C (2022) Mapping twenty years of antimicrobial resistance research trends. Artif Intell Med 123. https://doi.org/10.1016/j.artmed.2021.102216

  • Lv J, Deng S, Zhang L, Ji L, Senyi D, Le Z (2021) A review of artificial intelligence applications for antimicrobial resistance. Biosaf Health 3(1):22–31. https://doi.org/10.1016/j.bsheal.2020.08.003

  • Mahfouz N, Ferreira I, Beisken S, von Haeseler A, Posch AE (2020) Large-scale assessment of antimicrobial resistance marker databases for genetic phenotype prediction: a systematic review. J Antimicrob Chemother 75(11). https://doi.org/10.1093/jac/dkaa257

  • Metzker ML (2010) Sequencing technologies the next generation. Nat Rev Genet 11(1). https://doi.org/10.1038/nrg2626

  • Mullany P (2014) Functional metagenomics for the investigation of antibiotic resistance. Virulence 5(3). https://doi.org/10.4161/viru.28196

  • Nguyen M, Long SW, McDermott PF, Olsen RJ, Olson R, Stevens RL, Tyson GH, Zhao S, Davis JJ (2019) Using machine learning to predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J Clin Microbiol 57(2):e01260-e1318

    Google Scholar 

  • O’neill J (2014) Antimicrobial resistance. Tackling a crisis for the health and wealth of nations

    Google Scholar 

  • Opota O, Croxatto A, Prod’hom G, Greub G (2015) Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect 21(4). https://doi.org/10.1016/j.cmi.2015.01.003

  • Overton K, Fortané N, Broom A, Raymond S, Gradmann C, Orubu ESF, Podolsky SH, Rogers Van Katwyk S, Zaman MH, Kirchhelle C (2021) Waves of attention: patterns and themes of international antimicrobial resistance reports, 1945–2020. BMJ Glob Health 6(11). https://doi.org/10.1136/bmjgh-2021-006909

  • Paterson DL (2008) Impact of antibiotic resistance in gram-negative bacilli on empirical and definitive antibiotic therapy. Clin Infect Dis 47(SUPPL.1). https://doi.org/10.1086/590062

  • Pereira H (2013) Applicability of data mining technique using Bayesians network in diagnosis of genetic diseases. Int J Adv Comput Sci Appl 4(1). https://doi.org/10.14569/ijacsa.2013.040107

  • Pinto C, Pinto R, Gonçalves G (2022) Towards bio-inspired anomaly detection using the cursory dendritic cell algorithm. Algorithms 15(1). https://doi.org/10.3390/a15010001

  • Premanandh J, Samara BS, Mazen AN (2016) Race against antimicrobial resistance requires coordinated action—an overview. Front Microbiol 6:1536. https://doi.org/10.3389/fmicb.2015.01536

  • Quainoo S, Coolen JPM, van Hijum SAFT, Huynen MA, Melchers WJG, van Schaik W, Wertheim HFL (2017) Whole-genome sequencing of bacterial pathogens: the future of nosocomial outbreak analysis. Clin Microbiol Rev 30(4). https://doi.org/10.1128/CMR.00016-17

  • Rashid N, Iqbal J, Mahmood F, Abid A, Khan US, Tiwana MI (2018) Artificial immune system–negative selection classification algorithm (NSCA) for four class electroencephalogram (EEG) signals. Front Hum Neurosci 12. https://doi.org/10.3389/fnhum.2018.00439

  • Read M, Andrews PS, Timmis J (2012) An introduction to artificial immune systems BT. In: Rozenberg G, Bäck T, Kok JN (eds) Handbook of natural computing. Springer, Berlin, Heidelberg, pp 1575–1597. https://doi.org/10.1007/978-3-540-92910-9_47

  • Saltykova A, Mattheus W, Bertrand S, Roosens NHC, Marchal K, De Keersmaecker SCJ (2019) Detailed evaluation of data analysis tools for subtyping of bacterial isolates based on whole genome sequencing: Neisseria Meningitidis as a proof of concept. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02897

  • San Millan A (2018) Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol 26(12). https://doi.org/10.1016/j.tim.2018.06.007

  • Sánchez-Busó L, Harris SR (2019) Using genomics to understand antimicrobial resistance and transmission in Neisseria gonorrhoeae. Microb Genomics 5(2). https://doi.org/10.1099/mgen.0.000239

  • Sauget M, Bertrand X, Hocquet D (2018) Rapid antibiotic susceptibility testing onblood cultures using MALDI-TOF MS. PLoS ONE 13(10).https://doi.org/10.1371/journal.pone.0205603

  • Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Networks 61. https://doi.org/10.1016/j.neunet.2014.09.003

  • Sequence read archive (2018) The sequence read archive (SRA) overview. NCBI

    Google Scholar 

  • Sharma P, Dahiya S, Manral N, Kumari B, Kumar S, Pandey S, Sood S, Das B, Kapil A (2018) Changing trends of culture-positive typhoid fever and antimicrobial susceptibility in a tertiary care North Indian Hospital over the last decade. Indian J Med Microbiol 36(1). https://doi.org/10.4103/ijmm.IJMM_17_412

  • Sharma P, Kumar M, Dahiya S, Sood S, Das BK, Kaur P, Kapil A (2020) Structure based drug discovery and in vitro activity testing for DNA gyrase inhibitors of Salmonella Enterica Serovar Typhi. Bioorg Chem 104. https://doi.org/10.1016/j.bioorg.2020.104244

  • Sheela KG, Deepa SN (2013) Review on methods to fix number of hidden neurons in neural networks. Math Probl Eng 2013:425740. https://doi.org/10.1155/2013/425740

  • Shi J, Yan Y, Links MG, Li L, Dillon JAR, Horsch M, Kusalik A (2019) Antimicrobial resistance genetic factor identification from whole-genome sequence data using deep feature selection. BMC Bioinformatics 20. https://doi.org/10.1186/s12859-019-3054-4

  • Siddique N, Adeli H (2015) Nature inspired computing: an overview and some future directions. Cogn Comput 7(6):706–714. https://doi.org/10.1007/s12559-015-9370-8

  • Taylor-Brown A, Madden D, Polkinghorne A (2018) Culture-independent approaches to chlamydial genomics. Microb Genomics 4(2). https://doi.org/10.1099/mgen.0.000145

  • Tripathi MK, Nath A, Singh TP, Ethayathulla AS, Kaur P (2021a) Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery. Mol Diversity 25(3):1439–1460. https://doi.org/10.1007/s11030-021-10256-w

  • Tripathi MK, Sharma S, Singh TP, Ethayathulla AS, Kaur P (2021b) Computational intelligence in drug repurposing for COVID-19. In: Raza K (ed) Computational intelligence methods in COVID-19: surveillance, prevention, prediction and diagnosis. Springer, Singapore, pp 273–294. https://doi.org/10.1007/978-981-15-8534-0_14

  • Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, Losito AR, Bartoletti M, Del Bono V, Corcione S, Maiuro G, Tedeschi S, Celani L, Cardellino CS, Spanu T, Marchese A, Ambretti S, Cauda R, Viscoli C, Viale P (2015) Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother 70(7). https://doi.org/10.1093/jac/dkv086

  • Tzanetos A, Fister I, Dounias G (2020) A comprehensive database of Nature-Inspired Algorithms. Data Brief 31:105792. https://doi.org/10.1016/j.dib.2020.105792

  • Uelze L, Grützke J, Borowiak M, Hammerl JA, Juraschek K, Deneke C, Tausch SH, Malorny B (2020) Typing methods based on whole genome sequencing data. One Health Outlook 2(1). https://doi.org/10.1186/s42522-020-0010-1

  • Van Camp, PJ, Haslam DB, Porollo A (2020) Bioinformatics approaches to the understanding of molecular mechanisms in antimicrobial resistance. Int J Mol Sci 21(4). https://doi.org/10.3390/ijms21041363

  • Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22(2):387–408. https://doi.org/10.1007/s00500-016-2474-6

  • Wang L, Kang Q, Wu QDi (2007) Nature-inspired computation-effective realization of artificial intelligence. Xitong Gongcheng Lilun Yu Shijian/Syst Eng Theory Pract 27(5). https://doi.org/10.1016/s1874-8651(08)60034-4

  • Waring J, Lindvall C, Umeton R (2020) Automated machine learning: review of the state-of-the-art and opportunities for healthcare. Artif Intell Med 104. https://doi.org/10.1016/j.artmed.2020.101822

  • Weiss SJ, Mansell TJ, Mortazavi P, Knight R, Gill RT (2016) Parallel mapping of antibiotic resistance alleles in Escherichia coli. PLoS ONE 11(1). https://doi.org/10.1371/journal.pone.0146916

  • Yang X. S. (2020). Nature-inspired optimization algorithms: challenges and open problems. J Comput Sci 46. https://doi.org/10.1016/j.jocs.2020.101104

  • Zhang A-N, Gaston JM, Dai CL, Zhao S, Poyet M, Groussin M, Yin X, Li L-G, van Loosdrecht MCM, Topp E, Gillings MR, Hanage WP, Tiedje JM, Moniz K, Alm EJ, Zhang T (2021) An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat Commun 12(1):4765. https://doi.org/10.1038/s41467-021-25096-3

  • Zhao Q, Shen Y, Chen G, Luo Y, Cui S, Tian Y (2021) Prevalence and molecular characterization of fluoroquinolone-resistant Escherichia coli in healthy children. Front Cell Infect Microbiol 11:743390. https://doi.org/10.3389/fcimb.2021.743390

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punit Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P., Sethi, G., Tripathi, M.K., Rana, S., Singh, H., Kaur, P. (2024). Die Rolle der naturinspirierten Intelligenz bei der genomischen Diagnose antimikrobieller Resistenzen. In: Raza, K. (eds) Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik. Springer, Singapore. https://doi.org/10.1007/978-981-99-7808-3_12

Download citation

Publish with us

Policies and ethics