Skip to main content

A Novel Method for Signal Sequence Classification Based on Markov Reward Models

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2023)

Abstract

The efficiency and accuracy of signal sequence classification have always been the ultimate goals of researchers. However, it is difficult for existing methods to meet both requirements at the same time. This paper proposes a new signal sequence classification method based on Markov Reward Model (MRM) to solve the above problem. Firstly, a deterministic probabilistic finite automaton, learned from training sequence dataset, is transformed into a discrete time Markov Chain; then, leveraging JS divergence, a MRM is constructed; and finally, sequence classification is achieved on MRM efficiently and accurately. This method can be applied to many practical signal processing applications.

Supported by organization 11671244.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, P.S., Lee, K.H.: Genomic analysis. Curr. Opin. Biotechnol. 11(2), 171–175 (2000)

    Article  Google Scholar 

  2. Singhal, A., et al.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4), 35–43 (2001)

    Google Scholar 

  3. Loughran, T., McDonald, B.: Textual analysis in accounting and finance: a survey. J. Acc. Res. 54(4), 1187–1230 (2016)

    Article  Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  5. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. Inf. Syst. 53, 16–38 (2015)

    Article  Google Scholar 

  6. Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM SIGKDD Explor. Newsl. 12(1), 40–48 (2010)

    Article  Google Scholar 

  7. Dwivedi, S.K., Sengupta, S.: Classification of HIV-1 sequences using profile Hidden Markov models. PLoS ONE 7(5), e36566 (2012)

    Article  Google Scholar 

  8. Li, B., et al.: Research on location algorithm of mobile network based on hidden Markov model. In: Wang, Y., Liu, Y., Zou, J., Huo, M. (eds.) International Conference On Signal And Information Processing, Networking And Computers, pp. 938–946. Springer Nature Singapore, Singapore (2022). https://doi.org/10.1007/978-981-19-9968-0_113

  9. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

  10. Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018)

    Article  Google Scholar 

  11. Zulqarnain, M., Ghazali, R., Ghouse, M.G., Mushtaq, M.F.: Efficient processing of GRU based on word embedding for text classification. JOIV Int. J. Inform. Visual. 3(4), 377–383 (201)

    Google Scholar 

  12. Câmara, G.B.M., et al.: Convolutional neural network applied to SARS-CoV-2 sequence classification. Sensors 22(15), 5730 (2022)

    Article  Google Scholar 

  13. Ferreira, M.D., Corrêa, D.C., Nonato, L.G., de Mello, R.F.: Designing architectures of convolutional neural networks to solve practical problems. Expert Syst. Appl. 94, 205–217 (2018)

    Article  Google Scholar 

  14. De la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  15. Adenis, P., Mukherjee, K., Ray, A.: State splitting and state merging in probabilistic finite state automata. In: Proceedings of the 2011 American Control Conference, pp. 5145–5150. IEEE, San Francisco, CA, USA (2011)

    Google Scholar 

  16. Segala, R.: Modeling and verification of randomized distributed real-time systems. Massachusetts Institute of Technology (1996)

    Google Scholar 

  17. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  18. Kumari, R., Sharma, D.K.: Generalized ‘useful’AG and ‘useful’JS-divergence measures and their bounds. Int. J. Eng. Sci. Math. 7(1), 441–450 (2018)

    Google Scholar 

  19. Swami, P., Panigrahi, B., Nara, S., Bhatia, M., Gandhi, T.: EEG epilepsy datasets. 2(14280.32006) (2016). https://doi.org/10.13140/RG

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, D., Lei, L. (2024). A Novel Method for Signal Sequence Classification Based on Markov Reward Models. In: Cai, Z., Xiao, M., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2023. Communications in Computer and Information Science, vol 1944. Springer, Singapore. https://doi.org/10.1007/978-981-99-7743-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7743-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7742-0

  • Online ISBN: 978-981-99-7743-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics