Skip to main content

Nonmonotone Submodular Maximization Under Routing Constraints

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1944))

Included in the following conference series:

  • 134 Accesses

Abstract

In machine learning and big data, the optimization objectives based on set-cover, entropy, diversity, influence, feature selection, etc. are commonly modeled as submodular functions. Submodular (function) maximization is generally NP-hard, even in the absence of constraints. Recently, submodular maximization has been successfully investigated for the settings where the objective function is monotone or the constraint is computation-tractable. However, maximizing nonmonotone submodular function with complex constraints is not yet well-understood. In this paper, we consider the nonmonotone submodular maximization with a cost budget or feasibility constraint (particularly from route planning) that is generally NP-hard to evaluate. This is a very common issue in machine learning, big data, and robotics. This problem is NP-hard, and on top of that, its constraint evaluation is likewise NP-hard, which adds an additional layer of complexity. So far, few studies have been devoted to proposing effective solutions, leaving this problem currently unclear. In this paper, we first present an iterated greedy algorithm, which offers an approximate solution. Then we develop the proof machinery to demonstrate that our algorithm is a bicriterion approximation algorithm: it can accomplish a constant-factor approximation to the optimal algorithm, while keeping the over-budget tightly bounded. We also look at practical concerns for striking a balance between time complexity and over-budget. Finally, we conduct numeric experiments on two concrete examples to show our design’s efficacy in real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://arxiv.org/abs/2211.17131.

References

  1. Krause, A., Golovin, D.: Submodular function maximization, chapter tractability: practical approaches to hard problems, pp. 3–19. Cambridge University Press (2012)

    Google Scholar 

  2. Wu, K., Cai, D., He, X.: Multi-label active learning based on submodular functions. Neurocomputing 313, 436–442 (2018)

    Article  Google Scholar 

  3. Bilmes, J.: submodularity in machine learning and artificial intelligence (2022). https://arxiv.org/pdf/2202.00132v1.pdf

  4. Wu, T., Yang, P., Dai, H., Xu, W., Xu, M.: Collaborated tasks-driven mobile charging and scheduling: a near optimal result. In: IEEE Conference on Computer Communications (INFOCOM), pp. 1810–1818 (2019)

    Google Scholar 

  5. Amantidis, G., Kleer, P., Schafer, G.: Budget-feasible mechanism design for non-monotone submodular objectives: offline and online. In: the 2019 ACM Conference on Economics and Computation, pp. 901–919 (2019)

    Google Scholar 

  6. Jakkala, K., Akella, S.: Probabilistic gas leak rate estimation using submodular function maximizationwith routing constraints. IEEE Robot. Autom. Lett. 7(2), 5230–5237 (2022)

    Article  Google Scholar 

  7. Durr, C., Thang, N., Srivastav, A., Tible, L.: Non-monotone DR-submodular maximization over general convex sets. In: The Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI), pp. 2148–2157 (2020)

    Google Scholar 

  8. Nemhauser, G., Wolsey, L.: Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krause, A., Guestrin, C.: Near-optimal nonmyopic value of information in graphical models. In: The Nineteenth International Joint Conference on Artificial Intelligence (IJCAI), pp. 324–331 (2005)

    Google Scholar 

  10. Calinescu, G., Chekuri, C., Pal, M., Vondrak, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Badanidiyuru, A., Vondrak, J.: Fast algorithms for maximizing submodular functions. In: The 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1497–1514 (2014)

    Google Scholar 

  12. Zhang, H., Vorobeychik, Y.: Submodular optimization with routing constraints. In: AAAI (2016)

    Google Scholar 

  13. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-approximation for unconstrained submodular maximization. In: The 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 649–658 (2012)

    Google Scholar 

  14. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), Palm Springs, CA, USA, pp. 570–579 (2011)

    Google Scholar 

  15. Buchbinder, N., Feldman, M., Naor, J., Schwarts, R.: Submodular maximization with cardinality constraints. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1433–1452 (2014)

    Google Scholar 

  16. Lee, J., Mirrokni, V., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: STOC, Bethesda, Maryland, USA (2009)

    Google Scholar 

  17. Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: offline and secretary algorithms. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 246–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17572-5_20

    Chapter  Google Scholar 

  18. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular maximization: personalized data summarization. In: The 33rd International Conference on Machine Learning (ICML), New York, USA (2016)

    Google Scholar 

  19. Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. Proc. Mach. Learn. Res. 65, 1–27 (2017)

    Google Scholar 

  20. Shi, M., Yang, Z., Kim, D., Wang, W.: Non-monotone submodular function maximization under \(k\)-system constraint. J. Comb. Optim. 41(1), 128–142 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, S.: Beyond pointwise submodularity: non-monotone adaptive submodular maximization subject to knapsack and \(k\)-system constraints. Theoret. Comput. Sci. 936, 139–147 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Balkanski, E., Singer, Y.: The adaptive complexity of maximizing a submodular function. In: The 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 1138–1151 (2018)

    Google Scholar 

  23. Breuer, A., Balkanski, E., Singer, Y.: The fast algorithm for submodular maximization. In: The 37th International Conference on Machine Learning (ICML), Venna, Austria (2020)

    Google Scholar 

  24. Wang, S., Zhou, T., Lavania, C., Bilmes, J.: Constrained robust submodular partitioning. In: 35th Conference on Neural Information Processing Systems (NeurIPS), vol. 34, pp. 2721–2732. Curran Associates Inc. (2021)

    Google Scholar 

  25. Fujishige, S.: Submodular Functions and Optimization. Elsevier Science, Amsterdam (2005)

    MATH  Google Scholar 

  26. Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 510–520 (2011)

    Google Scholar 

  27. Mirzasoleiman, B., Jegelka, S., Krause, A.: Streaming non-monotone submodular maximization: personalized video summarization on the fly. In: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), pp. 1379–1386 (2018)

    Google Scholar 

  28. Sharma, D., Deshpande, A., Kapoor, A.: On greedy maximization of entropy. In: The 32nd International Conference on Machine Learning (ICML), Lille, France (2015)

    Google Scholar 

  29. Bachman, P., Hjelm, D., Buchwalter, W.: Learning representations by maximizing mutual information across views. In: 33rd Conference on Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  30. Tschannen, M., Djolonga, J., Rubenstein, P., Gelly, S., Lucic, M.: On mutual information maximization for representation learning. In the 8th International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  31. Iyer, R., Bilmes, J.: Submodular optimization with submodular cover and submodular knapsack constraints. In: NIPS, Lake Tahoe, Nevada, USA (2013)

    Google Scholar 

  32. Feige, U., Mirrokni, V., Vondrak, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Du, D., Ko, K., Hu, X.: Design and Analysis of Approximation Algorithms. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1701-9

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Li, R., Wu, Z., Sun, G. (2024). Nonmonotone Submodular Maximization Under Routing Constraints. In: Cai, Z., Xiao, M., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2023. Communications in Computer and Information Science, vol 1944. Springer, Singapore. https://doi.org/10.1007/978-981-99-7743-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7743-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7742-0

  • Online ISBN: 978-981-99-7743-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics