Skip to main content

Symmetry Analysis

  • Chapter
  • First Online:
An Introduction to Dynamical Systems and Chaos

Part of the book series: University Texts in the Mathematical Sciences ((UTMS))

Abstract

We have learnt the qualitative analysis of nonlinear systems in previous chapters. Symmetry is an inherent property of natural phenomena as well as manmade devices. Naturally, the concept of symmetry is exploited to study the linear as well as nonlinear problems. Keeping in mind the immense importance of symmetry, particularly in analyzing nonlinear systems we devote this chapter on basic idea of group of transformations, Lie group of transformations, Lie group of transformations, some theorems on Lie symmetry, its invariance, Invariance principle and algorithm, and symmetry analysis of some physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yaglom, M.: Felix Klein and Sophus Lie: Evolution of the Idea of Symmetry in the Nineteenth Century. Birkhäuser (1988)

    Google Scholar 

  2. Oberlack, M.: A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech. 427, 299–328 (2001)

    Article  Google Scholar 

  3. Layek, G.C., Sunita: Multitude scaling laws in axisymmetric turbulent wake. Phys. Fluids 30(3), 035101 (2018)

    Google Scholar 

  4. Layek, G.C., Sunita: Non-Kolmogorov scaling and dissipation laws in planar turbulent plume. Phys. Fluids 30(11), 115105 (2018)

    Google Scholar 

  5. Sunita, Layek, G.C.: Nonequilibrium turbulent dissipation in buoyant axisymmetric plume. Phys. Rev. Fluids 6(10), 104602 (2021)

    Google Scholar 

  6. Birkhoff, G.: Hydrodynamics—A Study in Logic, Fact and Similitude. Princeton University Press, Princeton (1960)

    Google Scholar 

  7. Ovsiannikov, L.V.: Groups Analysis of Differential Equations. Academic Press, New York (1982)

    Google Scholar 

  8. Ovsiannikov, L.V.: Groups and group-invariant solutions of differential equations. Dokl. Akad. Nauk. USSR 118, 439–442 (1958) (in Russian)

    Google Scholar 

  9. Ovsiannikov, L.V.: Groups Properties of Differential Equations. Novosibirsk (1962) (in Russian)

    Google Scholar 

  10. Ovsiannikov, L.V.: Groups properties of the nonlinear heat conduction equation. Dokl. Akad. Nauk. USSR 125, 492–495 (1958) (in Russian)

    Google Scholar 

  11. Bluman, G.W., Cole, J.D.: Similarity methods for differential equations. Appl. Math. Sci. 13. Springer-Verlag, New York (1974)

    Google Scholar 

  12. Bluman, G.W., Cole, J.D.: The general similarity solution of the heat equation. J. Math. Mech. 18, 1025–1042 (1969)

    MathSciNet  Google Scholar 

  13. Kumei, S.: Group theoretic aspects of conservation laws of nonlinear dispersive waves: KdV-type equations and nonlinear Schrödinger equations, invariance group transformation. J. Math. Phys. 18, 256–264 (1977)

    Article  MathSciNet  Google Scholar 

  14. Kumei, S.: Invariance transformations, invariance group transformation, and invariance groups of sine-Gordon equations. J. Math. Phys. 16, 2461–2468 (1975)

    Article  MathSciNet  Google Scholar 

  15. Olver, P.J.: Evolution equations possessing infinitely many symmetries. J. Math. Phys. 18, 1212–1215 (1977)

    Article  MathSciNet  Google Scholar 

  16. Olver, P.J.: Symmetry and explicit solutions of partial differential equations. Appl. Numer. Math. 10, 307–324 (1992)

    Article  MathSciNet  Google Scholar 

  17. Olver, P.J.: Symmetry groups and group invariant solutions of partial differential equations. J. Differ. Geom. 14, 497–542 (1979)

    Google Scholar 

  18. Ibragimov, N.H.: Methods of Group Analysis for Ordinary Differential Equations. Znanie Publ, Moscow (1991) (in Russian)

    Google Scholar 

  19. Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics. Riedel, Boston (1985)

    Book  Google Scholar 

  20. Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge Texts in Applied Mathematics (2002)

    Google Scholar 

  21. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer-Verlag, New York (2000)

    Google Scholar 

  22. Bluman, G.W., Kumei, S.: Symmetries and differential equations. Appl. Math. Sci. 81. Springer Verlag, New York (1996)

    Google Scholar 

  23. Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley (1999)

    Google Scholar 

  24. Noether, E.: Invariante Variationsprobleme. Nachr. König. Gesell. Wissen. Göttingen Math.-Phys. KL 235–257 (1918)

    Google Scholar 

  25. Korteweg, J.D., de Vries, G.: On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Philos. Mag. Ser. 5(39), 422–443 (1895)

    Article  Google Scholar 

  26. Layek, G.C., Kryzhevich, S.G., Gupta, A.S., Reza, M.: Steady magnetohydrodynamic flow in a diverging channel with suction or blowing. ZAMP 64, 123–143 (2013)

    MathSciNet  Google Scholar 

  27. Layek, G.C., Mandal, B., Bhattacharyya, K., Banerjee, A.: Lie symmetry analysis of boundary layer stagnation-point flow and heat transfer of non-Newtonian power-law fluids over a nonlinearly shrinking/stretching sheet with thermal radiation. Int. J. Nonlinear Sci. Numer. Simul. 19(3–4), 415–426 (2018)

    Google Scholar 

  28. Layek, G.C., Mandal, B., Bhattacharyya, K.: Dufour and Soret effects on unsteady mass transfer for Powel-Eyring fluid flow over an expanding permeable sheet. J. Appl. Comput. Mech. 6(4), 985–998 (2020)

    Google Scholar 

  29. Mandal, B., Layek, G.C.: Unsteady MHD mixed convective Casson fluid flow over a flat surface in the presence of slip. Int. J. Mod. Phys. C 32(03), 2150038 (2021)

    Article  MathSciNet  Google Scholar 

  30. Oberlack, M.: Symmetries in turbulent flows. In: Modern Group Analysis VII, Proceedings of the International Conference at the Sophus Lie Conference Center, Nordfjordeid, Norway, pp. 247–253 (1997)

    Google Scholar 

  31. Layek, G.C., Sunita: On the nature of multitude scalings in decaying isotropic turbulence. Int. J. Nonlinear Mech. 95, 143–150 (2017)

    Google Scholar 

  32. Layek, G.C., Sunita: Non-Kolmogorov dissipation in a turbulent planar jet. Phys. Rev. Fluids 3(12), 124605 (2018)

    Google Scholar 

  33. Vassilicos, J.C.: Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95–114 (2015)

    Article  MathSciNet  Google Scholar 

  34. Nedic, J., Vassilicos, J.C., Ganapathisubramani, B.: Axisymmetric turbulent wakes with new nonequilibrium similarity scalings. Phys. Rev. Lett. 111, 144503 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Layek .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Layek, G.C. (2024). Symmetry Analysis. In: An Introduction to Dynamical Systems and Chaos. University Texts in the Mathematical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-7695-9_8

Download citation

Publish with us

Policies and ethics