Skip to main content

Conceptual Onset of Xenotransplantation from ABO Blood Type-Incompatible Organ Allotransplantation

  • Chapter
  • First Online:
Glycoimmunology in Xenotransplantation
  • 85 Accesses

Abstract

Although regular AB(H) blood group system depicts non-SA-containing erythrocyte differentiation, another example of the Neu5Ac-attached to specific antigens is so-called human blood group MN, raised by genetic variations in the N-terminal regions of glycophorin in RBCs, which yield different and small O-linked sialylation from each individual [1, 2]. Such variations in the antigens also produce the different sialylglycans and consequently generate the specific binding antibodies against human RBCs to affect failure during blood transfusion. Similarly, some antibodies against other blood groups are also considered [3]. For example, the M and N blood group antigens of GPA consist of Siaα2,3Gal- and Siaα2,6GalNAc- residues, linked to O-glycan saccharides. These two M and N blood group antigens are bound by M/N-specific antibodies. The GPA-M and GPA-N antigens are easily confirmed by M-specific and N-specific Mab bindings. The GPAs with SA-Gal called GPA2,3 can be produced by asialoGPAs resialylation reaction using α2,3Sia-transferase. The GPAs with GalNAc-linked Sia (GPA2,6) are also produced, indicating the distinct presence of only one of two SA residues linked to Gal or GalNAc in the epitope [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki A, Gagneux P. Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci. 2012;1253(1):16–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sadler JE, Paulson JC, Hill RL. The role of sialic acid in the expression of human MN blood group antigens. J Biol Chem. 1979;254:2112–9.

    Article  CAS  PubMed  Google Scholar 

  3. Uemura K, Roelcke D, Nagai Y, Feizi T. The reactivities of human erythrocyte autoantibodies anti-Pr2, anti-Gd, Fl and Sa with gangliosides in a chromatogram binding assay. Biochem J. 1984;219:865–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duk M, Sticher U, Brossmer R, Lisowska E. The differences in significance of alpha 2,3Gal-linked and alpha 2,6GalNAc-linked sialic acid residues in blood group M- and N-related epitopes recognized by various monoclonal antibodies. Glycobiology. 1994;4(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  5. Ingebrigsten R. The influence of isoagglutinins on the final results of homoplastic transplantation arteries. J Exp Med. 1912;16:169–77. https://doi.org/10.1084/jem.16.2.169.

    Article  Google Scholar 

  6. Ottenburg R, Thalhimer W. Studies in experimental transfusion. J Med Res. 1915;28:213–29.

    Google Scholar 

  7. Bell K. The blood groups of domestic mammals. In: Agar NS, Board PG, editors. Red blood cells of domestic mammals. Elsevier Science Publishers; 1983. p. 133–64.

    Google Scholar 

  8. Andrews GA, Chavey PS, Smith JE, Rich L. N-Glycolylneuraminic acid and N-acetylneuraminic acid define feline blood group A and B antigens. Blood. 1992;79:2485–91.

    Article  CAS  PubMed  Google Scholar 

  9. Bighignoli B, Niini T, Grahn RA, Pedersen NC, Millon LV, Polli M, Longeri M, Lyons LA. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) mutations associated with the domestic cat AB blood group. BMC Genet. 2007;8:27.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yamakawa T, Suzuki A, Hashimoto Y. Genetic control of glycolipid expression. Chem Phys Lipids. 1986;42:75–90.

    Article  CAS  PubMed  Google Scholar 

  11. Bach FH, Robson SC, Winkler H, et al. Barriers to xenotransplantation. Nat Med. 1995;1:869.

    Article  CAS  PubMed  Google Scholar 

  12. Watkins WM, Morgan WTJ. Specific inhibition studies relating to the Lewis blood-group system. Nature. 1957;180:1038–40.

    Article  CAS  PubMed  Google Scholar 

  13. Morgan WTJ, Watkins WM. Genetic and biochemical aspects of human blood-group A-, B-, H-, Le-a- and Le-b-specificity. Br Med Bull. 1969;25:30–4.

    Article  CAS  PubMed  Google Scholar 

  14. Kabat EA. Immunochemical studies on the carbohydrate moiety of water soluble blood group A, B, H, Lea and Leb substances and their precursor I antigens. In: Isbell H, editor. Carbohydrates in solution (Adv chemistry series 117). Washington: American Chemical Society; 1973. p. 334–61.

    Chapter  Google Scholar 

  15. Karki G, Mishra VN, Mandal PK. An expeditious synthesis of blood-group antigens, ABO histo-blood group type II antigens and xenoantigen oligosaccharides with amino type spacer-arms. Glycoconj J. 2016;33(1):63–78.

    Article  CAS  PubMed  Google Scholar 

  16. West LJ, Pollock-Barziv SM, Dipchand AI, Lee KJ, Cardella CJ, Benson LN, Rebeyka IM, Coles JG. ABO-incompatible heart transplantation in infants. N Engl J Med. 2001;344:793–800.

    Article  CAS  PubMed  Google Scholar 

  17. Breimer ME. Tissue specificity of glycosphingolipids as expressed in pancreas and small intestine of blood group A and B human individuals. Arch Biochem Biophys. 1984;228:71–85.

    Article  CAS  PubMed  Google Scholar 

  18. Finne J, Breimer ME, Hansson GC, Karlsson KA, Leffler H, Vliegenthart JF, Halbeek HV. Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells. J Biol Chem. 1989;264:5720–35.

    Article  CAS  PubMed  Google Scholar 

  19. Holmner A, Lebens M, Teneberg S, Angstrom J, Ökvist M, Krengel U. Novel binding site identified in a hybrid between cholera toxin and heat-labile enterotoxin: 1.9 Å crystal structure reveals the details. Structure. 2004;12:1655–67.

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto F, Yamamoto M. Molecular genetic basis of porcine histo-blood group AO system. Blood. 2001;97(10):3308–10.

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto F, Clausen H, White T, Marken J, Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature. 1990;345:229–33.

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto F, McNeill PD, Yamamoto M, Hakomori S, Bromilow IM, Duguid JK. Molecular genetic analysis of the ABO blood group system, 4: another type of O allele. Vox Sang. 1993;64:175–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kelly RJ, Ernst LK, Larsen RD, Bryant JG, Robinson JS, Lowe JB. Molecular basis for H blood group deficiency in Bombay (Oh) and Para-Bombay individuals. Proc Natl Acad Sci U S A. 1994;91:5843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cooper DK. Clinical survey of heart transplantation between ABO blood group-incompatible recipients and donors. J Heart Transplant. 1990;9:376–81.

    CAS  PubMed  Google Scholar 

  25. Cooper DK, Human PA, Rose AG, Rees J, Keraan M, Reichart B, Du Toit E, Oriol R. The role of ABO blood group compatibility in heart transplantation between closely related animal species. An experimental study using the vervet monkey to baboon cardiac xenograft model. J Thorac Cardiovasc Surg. 1989;97:447–55.

    Article  CAS  PubMed  Google Scholar 

  26. Stussi G, West L, Cooper DK, Seebach JD. ABO-incompatible allotransplantation as a basis for clinical xenotransplantation. Xenotransplantation. 2006;13:390–9.

    Article  PubMed  Google Scholar 

  27. Galili U. Xenotransplantation and ABO incompatible transplantation: the similarities they share. Transfus Apher Sci. 2006;35:45–58.

    Article  PubMed  Google Scholar 

  28. Miyagawa S, Takeishi S, Yamamoto A, et al. Survey of glycoantigens in cells from alpha1-galactosyltransferase knockout pig using a lectin microarray. Xenotransplantation. 2010;17:61–70.

    Article  PubMed  Google Scholar 

  29. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem. 1988;263:17755–62.

    Article  CAS  PubMed  Google Scholar 

  30. Galili U. Evolution of alpha 1,3galactosyltransferase and of the alpha-Gal epitope. Subcell Biochem. 1999;32:1–23.

    CAS  PubMed  Google Scholar 

  31. Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. 1984;160:1519–31.

    Article  CAS  PubMed  Google Scholar 

  32. Galili U, Mandrell RE, Hamadeh RM, Shohet SB, Griffiss JM. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988;56:1730–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rood PP, Tai HC, Hara H, Long C, Ezzelarab M, Lin YJ, van der Windt DJ, Busch J, Ayares D, Ijzermans JN, et al. Late onset of development of natural anti-nonGal antibodies in infant humans and baboons: implications for xenotransplantation in infants. Transpl Int. 2007;20:1050–8.

    Article  PubMed  Google Scholar 

  34. Dons EM, Montoya C, Long CE, Hara H, Echeverri GJ, Ekser B, Ezzelarab C, Medellin DR, van der Windt DJ, Murase N, et al. T-cell-based immunosuppressive therapy inhibits the development of natural antibodies in infant baboons. Transplantation. 2012;93:769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cooper DK. Depletion of natural antibodies in non-human primates – a step towards successful discordant xenografting in humans. Clin Transpl. 1992;6:178–83.

    CAS  Google Scholar 

  36. Holgersson J, Breimer ME, Samuelsson BE. Basic biochemistry of cell surface carbohydrates and aspects on the tissue distribution of histo-blood group ABH and related glycosphingolipids. APMIS. 1992;100(suppl 27):18.

    Google Scholar 

  37. Breimer ME, Molne J, Norden G, et al. Blood group A and B antigen expression in human kidneys correlated to A1/A2/B, Lewis, and secretor status. Transplantation. 2006;82:479–85.

    Article  CAS  PubMed  Google Scholar 

  38. Squifflet JP, De Meyer M, Malaise J, et al. Lessons learned from ABO-incompatible living donor kidney transplantation: 20 years later. Exp Clin Transplant. 2004;2:208–13.

    PubMed  Google Scholar 

  39. Norde’n G, Breimer ME. ABO-incompatible kidney transplantation: overview and new strategies. Trends Transplant. 2007;2:35–43.

    Google Scholar 

  40. Montgomery RA, Locke JE, King KE, et al. ABO incompatible renal transplantation: a paradigm ready for broad implementation. Transplantation. 2009;87:1246–55.

    Article  PubMed  Google Scholar 

  41. Shimizu A, Colvin RB, Yamanaka N. Rejection of peritubular capillaries in renal Allo- and xeno-graft. Clin Transpl. 2000;14(Suppl 3):6–14.

    Article  Google Scholar 

  42. Vadori M, Cozzi E. The immunological barriers to xenotransplantation. Tissue Antigens. 2015;86(4):239–53. https://doi.org/10.1111/tan.12669.

    Article  CAS  PubMed  Google Scholar 

  43. Ierino FL, Sandrin MS. Spectrum of the early xenograft response: from hyperacute rejection to delayed xenograft injury. Crit Rev Immunol. 2007;27:153–66.

    Article  CAS  PubMed  Google Scholar 

  44. D’Orsogna L. Infectious pathogens may trigger specific allo-HLA reactivity via multiple mechanisms. Immunogenetics. 2017;69:631–41.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bottino R, Trucco M. Use of genetically-engineered pig donors in islet transplantation. World J Transplant. 2015;5:243.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vanhove B, de Martin R, Lipp J, Bach FH. Human xenoreactive natural antibodies of the IgM isotype activate pig endothelial cells. Xenotransplantation. 1994;1:17.

    Article  Google Scholar 

  47. Palmetshofer A, Galili U, Dalmasso AP, et al. [alpha]-Galactosyl epitope-mediated activation of porcine aortic endothelial cells. Transplantation. 1998;65:971.

    Article  CAS  PubMed  Google Scholar 

  48. Ehrnfelt C, Serrander L, Holgersson J. Porcine endothelium activated by anti-[alpha]-Gal antibody binding mediates increased human neutrophil adhesion under flow. Transplantation. 2003;76:1112.

    Article  CAS  PubMed  Google Scholar 

  49. Hauzenberger E, Klominek J, Holgersson J. Anti-Gal IgG potentiates natural killer cell migration across porcine endothelium via endothelial cell activation and increased natural killer cell motility triggered by CD16 cross-linking. Eur J Immunol. 2004;34:1154.

    Article  CAS  PubMed  Google Scholar 

  50. Holzknecht ZE, Platt JL. Identification of porcine endothelial cell membrane antigens recognized by human xenoreactive natural antibodies. J Immunol. 1995;154:4565.

    Article  CAS  PubMed  Google Scholar 

  51. Economidou J, Hughes-Jones NC, Gardner B. Quantitative measurements concerning A and B antigen sites. Vox Sang. 1967;12:321.

    Article  CAS  PubMed  Google Scholar 

  52. Holgersson J. Can ABO-incompatible organ transplantation pave the way for clinical xenotransplantation? Transplantation. 2007;84(12 Suppl):S48–50.

    Article  CAS  PubMed  Google Scholar 

  53. Tydén G, Kumlien G, Genberg H, et al. ABO incompatible kidney transplantations without splenectomy, using antigen-specific immunoadsorption and rituximab. Am J Transplant. 2005;5:145.

    Article  PubMed  Google Scholar 

  54. Auchincloss H Jr, Sachs DH. Xenogeneic transplantation. Annu Rev Immunol. 1998;16:433.

    Article  CAS  PubMed  Google Scholar 

  55. Koch CA, Khalpey ZI, Platt JL. Accommodation: preventing injury in transplantation and disease. J Immunol. 2004;172:5143.

    Article  CAS  PubMed  Google Scholar 

  56. Parker W, Lundberg-Swanson K, Holzknecht ZE, et al. Isohemagglutinins and xenoreactive antibodies. Hum Immunol. 1996;45:94.

    Article  CAS  PubMed  Google Scholar 

  57. Yu PB, Parker W, Everett ML, et al. Immunochemical properties of anti-Gal[alpha]1–3Gal antibodies after sensitization with xenogeneic tissues. J Clin Immunol. 1999;19:116.

    Article  CAS  PubMed  Google Scholar 

  58. Ishida H, Tanabe K, Ishizuka T, et al. Differences in humoral immunity between a nonrejection group and a rejection group after ABO-incompatible renal transplantation. Transplantation. 2006;81:665.

    Article  PubMed  Google Scholar 

  59. Tanemura M, Yin D, Chong AS, et al. Differential immune responses to [alpha]-Gal epitopes on xenografts and allografts: implications for accommodation in xenotransplantation. J Clin Invest. 2000;105:301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gollackner B, Goh SK, Qawi I, et al. Acute vascular rejection of xenografts: roles of natural and elicited xenoreactive antibodies in activation of vascular endothelial cells and induction of procoagulant activity. Transplantation. 2004;77:1735.

    Article  CAS  PubMed  Google Scholar 

  61. Platt JL, Kaufman CL, de Mattos G, Barbosa M, Cascalho M. Accommodation and related conditions in vascularized composite allografts. Curr Opin Organ Transplant. 2017;22(5):470–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Platt JL, Vercellotti GM, Dalmasso AP, et al. Transplantation of discordant xenografts: a review of progress. Immunol Today. 1990;11:450.

    Article  CAS  PubMed  Google Scholar 

  63. Dijke EI, Platt JL, Blair P, et al. B cells in transplantation. J Heart Lung Transplant. 2016;35:704–10.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rose ML, West LJ. Accommodation: does it apply to human leukocyte antigens? Transplantation. 2012;93(3):244–6.

    Article  CAS  PubMed  Google Scholar 

  65. Bach FH, Turman MA, Vercellotti GM, et al. Accommodation: aworking paradigm for progressing toward clinical discordant xenografting. Transplant Proc. 1991;23:205.

    CAS  PubMed  Google Scholar 

  66. Bach FH, Ferran C, Hechenleitner P, et al. Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med. 1997;3:196.

    Article  CAS  PubMed  Google Scholar 

  67. Stussi G, West L, Cooper DK, et al. ABO-incompatible allotransplantation as a basis for clinical xenotransplantation. Xenotransplantation. 2006;13:390.

    Article  PubMed  Google Scholar 

  68. Stewart S, Winters GL, Fishbein MC, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant. 2005;24:1710.

    Article  PubMed  Google Scholar 

  69. Haas M, Rahman MH, Racusen LC, et al. C4d and C3d staining in biopsies of ABO- and HLA-incompatible renal allografts: correlation with histologic findings. Am J Transplant. 2006;6:1829.

    Article  CAS  PubMed  Google Scholar 

  70. Williams JM, Holzknecht ZE, Plummer TB, Lin SS, Brunn GJ, Platt JL. Acute vascular rejection and accommodation: divergent outcomes of the humoral response to organ transplantation. Transplantation. 2004;78(10):1471–8.

    Article  PubMed  Google Scholar 

  71. Ding JW, Zhou T, Ma L, et al. Expression of complement regulatory proteins in accommodated xenografts induced by anti-alpha-Gal IgG1 in a rat-to-mouse model. Am J Transplant. 2008;8:32.

    Article  CAS  PubMed  Google Scholar 

  72. Cascalho MI, Chen BJ, Kain M, Platt JL. The paradoxical functions of B cells and antibodies in transplantation. J Immunol. 2013;190:875–9.

    Article  CAS  PubMed  Google Scholar 

  73. Jindra PT, Hsueh A, Hong L, et al. Anti-MHC class I antibody activation of proliferation and survival signaling in murine cardiac allografts. J Immunol. 2008;180:2214–24.

    Article  CAS  PubMed  Google Scholar 

  74. Breimer ME. Gal/non-gal antigens in pig tissues and human non-gal antibodies in the GalT-KO era. Xenotransplantation. 2011;18:215–28.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, CH. (2024). Conceptual Onset of Xenotransplantation from ABO Blood Type-Incompatible Organ Allotransplantation. In: Glycoimmunology in Xenotransplantation. Springer, Singapore. https://doi.org/10.1007/978-981-99-7691-1_8

Download citation

Publish with us

Policies and ethics