Skip to main content

Non-ABO Blood Group Systems

  • Chapter
  • First Online:
Glycoimmunology in Xenotransplantation
  • 77 Accesses

Abstract

After the ABO blood group discovery, Karl Landsteiner and his colleagues further discovered additional markers of blood groups of MN and P, and a third, Secretor, was found in 1930.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rearden A, Phan H, Dubnicoff T, Kudo S, Fukuda M. Identification of the crossing-over point of a hybrid gene encoding human glycophorin variant Sta. J Biol Chem. 1990;265(16):9259–63.

    Article  CAS  PubMed  Google Scholar 

  2. Tippett P, Reid ME, Poole J, Green CA, Daniels GL, et al. The Miltenberger subsystem: is it obsolescent? Transfus Med Rev. 1992;7(3):170–82.

    Article  Google Scholar 

  3. Chen TD, Chen DP, Wang WT, Sun CF. MNSs blood group glycophorin variants in Taiwan: a genotype-serotype correlation study of ‘Mi(a)’ and St(a) with report of two new alleles for St(a). PLoS One. 2014. 2014;9(5):e98166.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cleghorn TE. Two human blood group antigens, St-a (Stones) and Ri-a (Ridley), closely related to the MNSs system. Nature. 1962;21(195):297–8.

    Article  Google Scholar 

  5. Suchanowska A, Smolarek D, Czerwiński M. A new isoform of Sta gene found in a family with NOR polyagglutination. Transfusion. 2010;50(2):514–5.

    Article  CAS  PubMed  Google Scholar 

  6. Race RR, Sanger R. Blood groups in man. 6th ed. Oxford London Edinburgh Melbourne: Blackwell Scientific Publications; 1975.

    Google Scholar 

  7. Prokop O, Göhler W, Mayr W, Geserick G, Radam G. Human blood groups. Montreal: D. J. Paradis Editions Inc.; 1986.

    Google Scholar 

  8. Bundesärztekammer. Richtlinien für die Erstattung von Abstammungsgutachten. Dtsch Ärztebl. 2002;99:C509–11.

    Google Scholar 

  9. Hoppe J-D. Neufassung der Richtlinien für die Erstattung von Blutgruppengutachten. Bundesgesundheitsbl. 1990;33:264–9.

    Google Scholar 

  10. Garratty G, Dzik W, Issitt PD, Lublin DM, Reid ME, Zelinski T. Terminology for blood group antigens and genes-historical origins and guidelines in the new millennium. Transfusion. 2000;40:477–89.

    Article  CAS  PubMed  Google Scholar 

  11. Landsteiner K, Wiener AS. An agglutinable factor in human blood, recognized by immune sera for rhesus blood. Proc Soc Exp Biol Med. 1940;43:223–4.

    Article  CAS  Google Scholar 

  12. Levine P, Stetson RE. An unusual case of intragroup agglutination. JAMA. 1939;113:126–7.

    Article  Google Scholar 

  13. Fisher RA. The rhesus factor: a study in scientific method. Am Sci. 1947;35(95–102):113.

    Google Scholar 

  14. Apecu RO, Mulogo EM, Bagenda F, Byamungu A. ABO and rhesus (D) blood group distribution among blood donors in rural South Western Uganda: a retrospective study. BMC Res Notes. 2016;9(1):513. https://doi.org/10.1186/s13104-016-2299-5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lomas-Francis C, Reid ME. The dombrock blood group system: a review. Immunohematology. 2010;26(2):71–8.

    Article  CAS  PubMed  Google Scholar 

  16. Molthan L, Crawford MN, Tippett P. Enlargement of the dombrock blood group system: the finding of antiDob. Vox Sang. 1973;24:382–4.

    CAS  PubMed  Google Scholar 

  17. Lewis M, Allen FH Jr, Anstee DJ, et al. ISBT working party on terminology for red cell surface antigens: Munich report. Vox Sang. 1985;49:171–5.

    Article  CAS  PubMed  Google Scholar 

  18. Telen MJ, Rosse WF, Parker CJ, Moulds MK, Moulds JJ. Evidence that several high-frequency human blood group antigens reside on phosphatidylinositol-linked erythrocyte membrane proteins. Blood. 1990;75:1404–7.

    Article  CAS  PubMed  Google Scholar 

  19. Lewis M, Anstee DJ, Bird GWG, et al. Blood group terminology 1990. ISBT working party on terminology for red cell surface antigens. Vox Sang. 1990;58:152–69.

    Article  Google Scholar 

  20. Beattie KM, Castillo S. A case report of a hemolytic transfusion reaction caused by anti-Holley. Transfusion. 1975;15:476–80.

    Article  CAS  PubMed  Google Scholar 

  21. Chapel-Fernandes S, Callebaut I, Halverson GR, Reid ME, Bailly P, Chiaroni J. Dombrock genotyping in a native Congolese cohort reveals two novel alleles. Transfusion. 2009;49:1661–71.

    Article  CAS  PubMed  Google Scholar 

  22. Halverson GR, Schawalder A, Miller JL, Reid ME. Production of a monoclonal antibody shows the conservation of epitopes on the dombrock glycoprotein in the great apes (abstract). Transfusion. 2001;41(Suppl):24S.

    Google Scholar 

  23. Glowacki G, Braren R, Cetkovic-Cvrlje M, Leiter EH, Haag F, Koch-Nolte F. Structure, chromosomal localization, and expression of the gene for mouse ecto-mono(ADP-ribosyl)transferase ART5. Gene. 2001;275:267–77.

    Article  CAS  PubMed  Google Scholar 

  24. Jaskiewicz E, Peyrard T, Kaczmarek R, Zerka A, Jodlowska M, Czerwinski M. The Gerbich blood group system: old knowledge, new importance. Transfus Med Rev. 2018;32(2):111–6. https://doi.org/10.1016/j.tmrv.2018.02.004.

    Article  PubMed  Google Scholar 

  25. Colin Y, Joulin V, Le Van Kim C, Roméo PH, Cartron JP. Characterization of a new erythroid/megakaryocyte-specific nuclear factor that binds the promoter of the housekeeping human glycophorin C gene. J Biol Chem. 1990;265:16729–32.

    Article  CAS  PubMed  Google Scholar 

  26. Le Van Kim C, Colin Y, Mitjavila MT, Clerget M, Dubart A, Nakazawa M, et al. Structure of the promoter region and tissue specificity of the human glycophorin C gene. J Biol Chem. 1989;264:20407–14.

    Article  Google Scholar 

  27. Le Van Kim C, Mitjavila MT, Clerget M, Cartron JP, Colin Y. An ubiquitous isoform of glycophorin C is produced by alternative splicing. Nucleic Acids Res. 1990;18:3076.

    Article  Google Scholar 

  28. Colin Y, Le Van Kim C, Tsapis A, Clerget M, d’Auriol L, London J, et al. Human erythrocyte glycophorin C. Gene structure and rearrangement in genetic variants. J Biol Chem. 1989;264:3773–80.

    Article  CAS  PubMed  Google Scholar 

  29. Salomao M, Zhang X, Yang Y, Lee S, Hartwig JH, Chasis JA, et al. Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci U S A. 2008;105:8026–31. https://doi.org/10.1073/pnas.0803225105.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chang S, Reid ME, Conboy J, Kan YW, Mohandas N. Molecular characterization of erythrocyte glycophorin C variants. Blood. 1991;77:644–8.

    Article  CAS  PubMed  Google Scholar 

  31. Gourri E, Denomme GA, Merki Y, Scharberg EA, Vrignaud C, Frey BM, et al. Genetic background of the rare Yus and Gerbich blood group phenotypes: homologous regions of the GYPC gene contribute to deletion alleles. Br J Haematol. 2017;177:630–40. https://doi.org/10.1111/bjh.14578.

    Article  CAS  PubMed  Google Scholar 

  32. McShane K, Chung A. A novel human alloantibody in the Gerbich system. Vox Sang. 1989;57:205–9.

    Article  CAS  PubMed  Google Scholar 

  33. Daniels G. Human blood groups. Wiley-Blackwell; 2013. https://doi.org/10.1002/9781118493595.ch1.

    Book  Google Scholar 

  34. Göttsche B, Salama A, Mueller-Eckhardt C. Autoimmune hemolytic anemia associated with an IgA autoanti-Gerbich. Vox Sang. 1990;58:211–4.

    PubMed  Google Scholar 

  35. Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G, Garver LS, et al. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu Rev Immunol. 2014;32:157–87. https://doi.org/10.1146/annurev-immunol-032713-120220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malpede BM, Tolia NH. Malaria adhesins: structure and function. Cell Microbiol. 2014;16:621–31. https://doi.org/10.1111/cmi.12276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, de Jong NW, Harvey KL, et al. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog. 2015;11:e1004670. https://doi.org/10.1371/journal.ppat.1004670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40:343–72. https://doi.org/10.1093/femsre/fuw001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Satchwell TJ. Erythrocyte invasion receptors for Plasmodium falciparum: new and old. Transfus Med. 2016;26:77–88. https://doi.org/10.1111/tme.12280.

    Article  CAS  PubMed  Google Scholar 

  40. Tham WH, Healer J, Cowman AF. Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends Parasitol. 2012;28:23–30. https://doi.org/10.1016/j.pt.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  41. Adams JH, Blair PL, Kaneko O, Peterson DS. An expanding ebl family of Plasmodium falciparum. Trends Parasitol. 2001;17:297–9. https://doi.org/10.1016/S1471-4922(01)01948-1.

    Article  CAS  PubMed  Google Scholar 

  42. Wanaguru M, Crosnier C, Johnson S, Rayner JC, Wright GJ. Biochemical analysis of the plasmodium falciparum erythrocyte-binding Antigen-175 (EBA175)-Glycophorin-a interaction: implications for vaccine design. J Biol Chem. 2013;288:32106–17. https://doi.org/10.1074/jbc.M113.484840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Salinas ND, Paing MM, Tolia NH. Critical glycosylated residues in exon three of erythrocyte glycophorin a engage Plasmodium falciparum EBA-175 and define receptor specificity. MBio. 2014;5:e01606–14. https://doi.org/10.1128/mBio.01606-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thompson JK, Triglia T, Reed MB, Cowman AF. A novel ligand from Plasmodium falciparum that binds to a sialic acid-containing receptor on the surface of human erythrocytes. Mol Microbiol. 2001;41:47–58.

    Article  CAS  PubMed  Google Scholar 

  45. Rydzak J, Kaczmarek R, Czerwinski M, Lukasiewicz J, Tyborowska J, Szewczyk B, et al. The Baculovirus-expressed binding region of Plasmodium falciparum EBA-140 ligand and its glycophorin C binding specificity. PLoS One. 2015;10:e0115437. https://doi.org/10.1371/journal.pone.0115437.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Malpede BM, Lin DH, Tolia NH. Molecular basis for sialic acid-dependent receptor recognition by the Plasmodium falciparum invasion protein erythrocyte-binding antigen-140/BAEBL. J Biol Chem. 2013;288:12406–15. https://doi.org/10.1074/jbc.M113.450643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin MJ, Rayner JC, Gagneux P, Barnwell JW, Varki A. Evolution of human-chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. Proc Natl Acad Sci U S A. 2005;102:12819–24. https://doi.org/10.1073/pnas.0503819102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zerka A, Kaczmarek R, Czerwinski M, Jaskiewicz E. Plasmodium reichenowi EBA-140 merozoite ligand binds to gycophorin D on chimpanzee red blood cells, shedding the light on origins of Plasmodium falciparum. Parasit Vectors. 2017;10:554. https://doi.org/10.1186/s13071-017-2507-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yiangou L, Montandon R, Modrzynska K, Rosen B, Bushell W, Hale C, et al. A stem cell strategy identifies glycophorin C as a major erythrocyte receptor for the rodent malaria parasite Plasmodium berghei. PLoS One. 2016;11:e0158238. https://doi.org/10.1371/journal.pone.0158238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15:479–91. https://doi.org/10.1038/nrmicro.2017.47.

    Article  CAS  PubMed  Google Scholar 

  51. Sherman IW, Eda S, Winograd E. Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect. 2003;5:897–909.

    Article  CAS  PubMed  Google Scholar 

  52. Niang M, Bei AK, Madnani KG, Pelly S, Dankwa S, Kanjee U, et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and resetting. Cell Host Microbe. 2014;16:81–93. https://doi.org/10.1016/j.chom.2014.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moulds JM. The knops blood-group system: a review. Immunohematology. 2010;26(1):2–7.

    Article  CAS  PubMed  Google Scholar 

  54. Daniels GL, Anstee DJ, Cartron JP, et al. Blood group terminology 1995. Vox Sang. 1995;69:265–79.

    CAS  PubMed  Google Scholar 

  55. Molthan L, Giles CM. A new antigen, Yka, and its relationship to Csa (cost). Vox Sang. 1975;29:145–53.

    CAS  PubMed  Google Scholar 

  56. Helgeson M, Swanson J, Polesky HF. Knops-Helgeson (Kna), a high frequency erythrocyte antigen. Transfusion. 1970;10:737–8.

    Article  Google Scholar 

  57. Mallan MT, Grimm W, Hindley L, Knighton G, Moulds MK, Moulds JJ. The Hall serum: detecting Knb, the antithetical allele to Kna (abstract). Transfusion. 1980;20:630.

    Google Scholar 

  58. Lacey P, Laird-Fryer B, Block U, Lair J, Guilbeau L, Moulds JJ. A new high incidence blood group factor, Sla; and its hypothetical allele. (abstract). Transfusion. 1980;20:632.

    Google Scholar 

  59. Molthan L. Expansion of the York, cost, McCoy, knops blood group system: the new McCoy antigens McCc and McCd. Med Lab Sci. 1983;40:113–21.

    CAS  PubMed  Google Scholar 

  60. Daniels GL, Cartron JP, Fletcher A, et al. International Society of Blood Transfusion Committee on terminology for red cell surface antigens: Vancouver report. Vox Sang. 2003;84:244–7.

    Article  CAS  PubMed  Google Scholar 

  61. Moulds JM, Pierce S, Peck KB, Tulley ML, Doumbo O, Moulds JJ. KAM: a new allele in the knops blood group system (abstract). Transfusion. 2005;45(Suppl):27A.

    Google Scholar 

  62. Rao N, Ferguson DJ, Lee SF, Telen MJ. Identification of human erythrocyte blood group antigens on the C3b/C4b receptor. J Immunol. 1991;146:3501–7.

    Article  Google Scholar 

  63. Holme E, Fyfe A, Zoma A, Veitch J, Hunter J, Whaley K. Decreased C3b receptors (CR1) on rythrocytes from patients with systemic lupus erythematosus. Clin Exp Immunol. 1986;63:41–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Daniels GL, Shaw MA, Lomas CG, Leak MR, Tippett P. The effect of in(Lu) on some high-frequency antigens. Transfusion. 1986;26:171–2.

    Article  CAS  PubMed  Google Scholar 

  65. Rowe JA, Moulds JM, Newbold CI, Miller LH. P. Falciparum rosetting mediated by a parasite-variant erythrocyte protein and complement-receptor 1. Nature. 1997;388:292–5.

    Article  CAS  PubMed  Google Scholar 

  66. Moulds JM, Kassambara L, Middleton JJ. Identification of complement receptor one (CR1) polymorphisms in West Africa. Genes Immun. 2000;1:325–9.

    Article  CAS  PubMed  Google Scholar 

  67. Da Silva RP, Hall BF, Joiner KA, Sacks DL. CR1, the C3b receptor, mediates binding of infective leishmania major metacyclic promastigotes to human macrophages. J Immunol. 1989;143:617–22.

    Article  PubMed  Google Scholar 

  68. Payne NR, Horwitz MA. Phagocytosis of legionella pneumophila is mediated by human monocyte complement receptors. J Exp Med. 1987;166:1377–89.

    Article  CAS  PubMed  Google Scholar 

  69. Robledo S, Wozencraft A, Valencia AZ, Saravia N. Human monocyte infection by Leishmania (viannia) panamensis. J Immunol. 1994;152:1265–75.

    Article  CAS  PubMed  Google Scholar 

  70. Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol. 1990;144:2771–80.

    Article  CAS  PubMed  Google Scholar 

  71. Noumsi GT, Tounkara A, Diallo D, Moulds JM. Knops blood group polymorphism and protection from Mycobacterium tuberculosis (abstract). Transfusion. 2006;46(Suppl):19A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, CH. (2024). Non-ABO Blood Group Systems. In: Glycoimmunology in Xenotransplantation. Springer, Singapore. https://doi.org/10.1007/978-981-99-7691-1_7

Download citation

Publish with us

Policies and ethics