Skip to main content

Non-α1,3Gal Carbohydrate Antigenic Epitopes

  • Chapter
  • First Online:
Glycoimmunology in Xenotransplantation
  • 95 Accesses

Abstract

Non-Gal (Non-α1,3-Gal) antigenic epitope is also targeted by the cellular immune system. Preformed natural non-Gal Abs do not cause HR in pig-to-human xenografts. However, non-α1,3Gal Abs can induce graft-injured damages to cells in both vascularized organs and tissues. Transplanted xenografts induce production of non-α1,3Gal-specific Abs in the hosts. Likely to the human allograft rejection, the anti-non-α1,3Gal Abs control survivals of xenografts in the host. The pig MHC molecules-specific Abs of humans preferably bind to the glycan structures, but not proteins. Elucidation on the relationship between non-α1,3Gal antigenic epitope structures of pigs and the reactive non-α1,3Gal Abs of humans is interesting in understanding of the Abs-mediated graft damages in near future. Relevant understanding of downstream reaction of non-α1,3Gal antigens in pig xenografts to human Abs should be systematically explained and edited in future. When α1,3-Gal antigen-based HR is overcome, AHR is elicited by low levels of natural Abs to α1,3Gal epitopes, which occur within 3 days to 3 weeks. However, AHR is poorly understood. As a similar expression, AVR or DXR is known. Non-α1,3Gal antigenic epitopes and non-α1,3Gal Abs are suggested to involve in such AHR, AVR, or DXR. To date, a representative and predominant non-α1,3Gal antigen is Neu5Gc as the major non-α1,3Gal xenoantigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diswall M, et al. Structural characterization of alpha1,3-galactosyltransferase knockout pig heart and kidney glycolipids and their reactivity with human and baboon antibodies. Xenotransplantation. 2010;17:48–60.

    Article  PubMed  Google Scholar 

  2. Fischer K. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci Rep. 2016;6:29081. https://doi.org/10.1038/srep29081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Platt JL, et al. Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation. 1991;52:214–20.

    Article  CAS  PubMed  Google Scholar 

  4. Byrne GW, McGregor CG, Breimer ME. Recent investigations into pig antigen and anti-pig antibody expression. Int J Surg. 2015;23(Pt B):223–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ashton-Chess J, et al. The effect of immunoglobulin immunadsorptions on delayed xenograft rejection of human CD55 transgenic pig kidneys in baboons. Xenotransplantation. 2003;10:552–61.

    Article  PubMed  Google Scholar 

  6. Zhang J, Xie C, Lu Y, Zhou M, Qu Z, Yao D, Qiu C, Xu J, Pan D, Dai Y, Hara H, Cooper DKC, Ma S, Li M, Cai Z, Mou L. Potential antigens involved in delayed xenograft rejection in a Ggta1/Cmah Dko pig-to-monkey model. Sci Rep. 2017;7(1):10024. https://doi.org/10.1038/s41598-017-10805-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahrens HE, et al. siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation. Am J Transplant. 2015;15:1407–14. https://doi.org/10.1111/ajt.13120.

    Article  CAS  PubMed  Google Scholar 

  8. Oropeza M, et al. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation. 2009;16:522–34.

    Article  PubMed  Google Scholar 

  9. Petersen B, et al. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation. 2011;18:355–68.

    Article  PubMed  Google Scholar 

  10. Chen G, Sun H, Yang H, et al. The role of anti-non-Gal antibodies in the development of acute humoral xenograft rejection of hDAF transgenic porcine kidneys in baboons receiving anti-Gal antibody neutralization therapy. Transplantation. 2006;81:273–83.

    Article  CAS  PubMed  Google Scholar 

  11. Baumann BC, Stussi G, Huggel K, Rieben R, Seebach JD. Reactivity of human natural antibodies to endothelial cells from Galalpha(1,3)Gal-deficient pigs. Transplantation. 2007;83:193–201.

    Article  CAS  PubMed  Google Scholar 

  12. Ezzelarab M, Ayares D, Cooper DK. Carbohydrates in xenotransplantation. Immunol Cell Biol. 2005;83:396–404.

    Article  CAS  PubMed  Google Scholar 

  13. Blixt O, Kumagai-Braesch M, Tibell A, Groth CG, Holgersson J. Anticarbohydrate antibody repertoires in patients transplanted with fetal pig islets revealed by glycan arrays. Am J Transplant. 2009;9:83–90.

    Article  CAS  Google Scholar 

  14. Yeh P, Ezzelarab M, Bovin N, et al. Investigation of potential carbohydrate antigen targets for human and baboon antibodies. Xenotransplantation. 2010;17:197–206.

    Article  PubMed  Google Scholar 

  15. Park SJ, et al. Production and characterization of soluble human TNFRI-Fc and human HO-1(HMOX1) transgenic pigs by using the F2A peptide. Transgenic Res. 2014;23:407–19.

    Article  CAS  PubMed  Google Scholar 

  16. Kim GA. Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1quadruple gene modified pigs. Transgenic Res. 2017;26:435–45.

    Article  CAS  PubMed  Google Scholar 

  17. Vadori M, Cozzi E. The immunological barriers to xenotransplantation. Tissue Antigens. 2015;86(4):239–53.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Z, Gao B, Zhao C, Long C, Qi H, Cooper DKC, Hara H. The impact of serum incubation time on IgM/IgG binding to porcine aortic endothelial cells. Xenotransplantation. 2017;24:e12312.

    Article  Google Scholar 

  19. Harnden I, Kiernan K, Kearns-Jonker M. The anti-nonGal xenoantibody response to alpha1,3-galactosyltransferase gene knockout pig xenografts. Curr Opin Organ Transplant. 2010;15(2):207–11.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Knosalla C, et al. Renal and cardiac endothelial heterogeneity impact acute vascular rejection in pig-to-baboon xenotransplantation. Am J Transplant. 2009;9:1006–16. https://doi.org/10.1111/j.1600-6143.2009.02602.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuwaki K, et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med. 2005;11:29–31. https://doi.org/10.1038/nm1171.

    Article  CAS  PubMed  Google Scholar 

  22. Estrada JL, Martens G, Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation. 2015;22:194–202.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Breimer ME. Gal/non-Gal antigens in pig tissues and human non-Gal antibodies in the GalT-KO era. Xenotransplantation. 2011;18:215–28.

    Article  PubMed  Google Scholar 

  24. Landsteiner K, Levine P. Further observations on individual differences of human blood. Exp Biol Med. 1927;24(9):941–2. https://doi.org/10.3181/00379727-24-3649.

    Article  CAS  Google Scholar 

  25. Kaczmarek R, Buczkowska A, Mikolajewicz K, Krotkiewski H, Czerwinski M. P1PK, GLOB, and FORS blood group systems and GLOB collection: biochemical and clinical aspects. Do we understand it all yet? Transfus Med Rev. 2014;28(3):126–36. https://doi.org/10.1016/j.tmrv.2014.04.007.

    Article  PubMed  Google Scholar 

  26. Hellberg A. P1PK: a blood group system with an identity crisis. ISBT Sci Ser. 2020;15:40–5. https://doi.org/10.1111/voxs.12505.

    Article  Google Scholar 

  27. Mikolajczyk K, Sikora M, Hanus C, Kaczmarek R, Czerwinski M. One of the two N-glycans on the human Gb3/CD77 synthase is essential for its activity and allosterically regulates its function. Biochem Biophys Res Commun. 2022;617(Pt 1):36–41. https://doi.org/10.1016/j.bbrc.2022.05.085.

    Article  CAS  PubMed  Google Scholar 

  28. Yeh CC, Chang CJ, Twu YC, Hung ST, Tsai YJ, Liao JC, Huang JT, Kao YH, Lin SW, Yu LC. The differential expression of the blood group P1-A4GALT and P2-A4GALT alleles is stimulated by the transcription factor early growth response 1. Transfusion. 2018;58(4):1054–64. https://doi.org/10.1111/trf.14515.

    Article  CAS  PubMed  Google Scholar 

  29. Thinley J, Nathalang O, Chidtrakoon S, Intharanut K. Blood group P1 prediction using multiplex PCR genotyping of A4GALT among Thai blood donors. Transfus Med. 2021;31(1):48–54. https://doi.org/10.1111/tme.12749.

    Article  PubMed  Google Scholar 

  30. Duk M, Kusnierz-Alejska G, Korchagina EY, Bovin NV, Bochenek S, Lisowska E. Anti-α-galactosyl antibodies recognizing epitopes terminating with α1,4-linked galactose: human natural and mouse monoclonal anti-NOR and anti-P1 antibodies. Glycobiology. 2005;15(2):109–18. https://doi.org/10.1093/oxfordjournals.glycob.a034964.

    Article  CAS  PubMed  Google Scholar 

  31. Yu LC, Twu YC, Chang CY, Lin M. Molecular basis of the adult I phenotype and the gene responsible for the expression of the human blood group I antigen. Blood. 2001;98(13):3840–5. https://doi.org/10.1182/blood.v98.13.3840.

    Article  CAS  PubMed  Google Scholar 

  32. Yu LC, Lin M. Molecular genetics of the blood group I system and the regulation of I antigen expression during erythropoiesis and granulopoiesis. Curr Opin Hematol. 2011;18(6):421–6.

    Article  CAS  PubMed  Google Scholar 

  33. Reid ME. The gene encoding the I blood group antigen: review of an I for an eye. Immunohematology. 2020;20(4):249–52.

    Article  Google Scholar 

  34. Marsh WL. Anti-i: a cold antibody defining the Ii relationship in human red cells. Br J Haematol. 1961;7:200–9.

    Article  CAS  PubMed  Google Scholar 

  35. Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 1985;314(6006):53–7.

    Article  CAS  PubMed  Google Scholar 

  36. I antigens. Identification of a UDP-GlcNAc:GlcNAc beta 1-3Gal(−R) beta 1-6(GlcNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa. J Biol Chem. 1984;259(21):13385–90.

    Article  Google Scholar 

  37. Van Poll D, Nahmias Y, Soto-Gutierrez A, et al. Human immune reactivity against liver sinusoidal endothelial cells from GalTalpha(1,3)GalT-deficient pigs. Cell Transplant. 2010;19:783–9.

    Article  PubMed  Google Scholar 

  38. Shimizu A, Hisashi Y, Kuwaki K, et al. Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. Am J Pathol. 2008;172:1471–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oriol R, Ye Y, Koren E, et al. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation. 1993;56:1433–42.

    Article  CAS  PubMed  Google Scholar 

  40. Bouhours D, Liaigre J, Naulet J, et al. A novel pentaglycosylceramide in ostrich liver, IV4-beta-Gal-nLc4Cer, with terminal Gal(beta1-4)Gal, a xenoepitope recognized by human natural antibodies. Glycobiology. 2000;10:857–64.

    Article  CAS  PubMed  Google Scholar 

  41. Hallberg EC, Holgersson J, Samuelsson BE. Glycosphingolipid expression in pig aorta: identification of possible target antigens for human natural antibodies. Glycobiology. 1998;8:637–49.

    Article  CAS  PubMed  Google Scholar 

  42. Kim YG, Gil GC, Harvey DJ, et al. Structural analysis of alpha-Gal and new non-Gal carbohydrate epitopes from specific pathogen-free miniature pig kidney. Proteomics. 2008;8:2596–610.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu A. Binding of human natural antibodies to nonalphaGal xenoantigens on porcine erythrocytes. Transplantation. 2000;69:2422–8.

    Article  CAS  PubMed  Google Scholar 

  44. Buhler L, Xu Y, Li W, et al. An investigation of the specificity of induced antipig antibodies in baboons. Xenotransplantation. 2003;10:88–93.

    Article  CAS  PubMed  Google Scholar 

  45. Komoda H, Miyagawa S, Kubo T, et al. A study of the xenoantigenicity of adult pig islets cells. Xenotransplantation. 2004;11:237–46.

    Article  PubMed  Google Scholar 

  46. Byrne GW, Stalboerger PG, Davila E, et al. Proteomic identification of non-Gal antibody targets after pig-to-primate cardiac xenotransplantation. Xenotransplantation. 2008;15:268–76.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Montiel MD, Krzewinski-Recchi MA, Delannoy P, et al. Molecular cloning, gene organization and expression of the human UDP-GalNAc: Neu5Acalpha2-3Galbeta-R beta1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain. Biochem J. 2003;373:369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miyagawa S, Ueno T, Nagashima H, Takama Y, Fukuzawa M. Carbohydrate antigens. Curr Opin Organ Transplant. 2012;17(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  49. Komoda H, Miyagawa S, Omori T, Takahagi Y, Murakami H, Shigehisa T, Ito T, Matsuda H, Shirakura R. Survival of adult islet grafts from transgenic pigs with N-acetylglucosaminyltransferase-III (GnT-III) in cynomolgus monkeys. Xenotransplantation. 2005;12(3):209–16.

    Article  PubMed  Google Scholar 

  50. Chung TW, Kim KS, Kim CH. Reduction of the Gal-alpha1,3-Gal epitope of mouse endothelial cells by transfection with the N-acetylglucosaminyltransferase III gene. Mol Cells. 2003;16(3):368–76.

    Article  CAS  PubMed  Google Scholar 

  51. Diswall M, Gustafsson A, Holgersson J, et al. Antigen-binding specificity of anti-αGal reagents determined by solid-phase glycolipid-binding assays. A complete lack of αGal glycolipid reactivity in α1,3GalT-KO pig small intestine. Xenotransplantation. 2011;18:28–39.

    Article  PubMed  Google Scholar 

  52. Song KH, Kim CH. Sialo-Xenoantigenic glycobiology: molecular glycobiology of sialylglycan-xenoantigenic determinants in pig to human xenotransplantation. Heidelberg, New York, Dordrecht, London. USSN 2195-3546: Springer; 2012. https://doi.org/10.1007/978-34094-9.

    Book  Google Scholar 

  53. Keusch JJ, Manzella SM, Nyame KA, et al. Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids. J Biol Chem. 2000;275:25308–14.

    Article  CAS  PubMed  Google Scholar 

  54. Gusstafsson A, Ayares DL, Cooper DKC, et al. Carbohydrate phenotyping of endothelial cell glycoproteins from alpha1,3galactosyl-transferase gene knockout and wild type pigs. Xenotransplantation. 2005;12:375.

    Google Scholar 

  55. Taylor SG, Mckenzie IF, Sandrin MS. Characterization of the rat alpha(1,3)galactosyltransferase: evidence for two independent genes encoding glycosyltransferases that synthesize Galalpha(1,3)Gal by two separate glycosylation pathways. Glycobiology. 2003;13:327–37.

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Thapa P, Hawke D, et al. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus. J Proteome Res. 2009;8:2740–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Puga Yung GL, Li Y, Borsig L, Millard A-L, Karpova MB, Zhou D, Seebach JD. Complete absence of the aGal xenoantigen and isoglobotrihexosylceramide in a 1,3galactosyltransferase knock-out pigs. Xenotransplantation. 2012;19:196–206.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Baumann BC, Forte P, Hawley RJ, Rieben R, Schneider MK, Seebach JD. Lack of galactose-alpha-1,3-galactose expression on porcine endothelial cells prevents complement-induced lysis but not direct xenogeneic NK cytotoxicity. J Immunol. 2004;172:6460–7.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou D, Levery SB. Response to Milland et al.: carbohydrate residues downstream of the terminal Galalpha(1,3)Gal epitope modulate the specificity of xenoreactive antibodies. Immunol Cell Biol. 2008;86:631–2. author reply 633-634.

    Article  CAS  PubMed  Google Scholar 

  60. Pierson RN III, Dorling A, Ayares D, et al. Current status of xenotransplantation and prospects for clinical application. Xenotransplantation. 2009;16:263–80.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Milland J, Christiansen D, Lazarus BD, Taylor SG, Xing PX, Sandrin MS. The molecular basis for galalpha(1,3)gal expression in animals with a deletion of the alpha1,3galactosyltransferase gene. J Immunol. 2006;176(4):2448–54.

    Article  CAS  PubMed  Google Scholar 

  62. Sandrin IF, Christiansen D, Milland J. The impact of the α1,3-galactosyltransferase gene knockout pig on xenotransplantation. Curr Opin Organ Transplant. 2007;2:154–7.

    Article  Google Scholar 

  63. Christiansen D, Milland J, Mouhtouris E, et al. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol. 2008;6:e172.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Speak AO, Salio M, Neville DC, Fontaine J, Priestman DA, Platt N, et al. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc Natl Acad Sci U S A. 2007;104(14):5971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tahiri F, Li Y, Hawke D, Ganiko L, Almeida I, Levery S, et al. Lack of iGb3 and isoglobo-series glycosphingolipids in pig organs used for xenotransplantation: implications for natural killer T-cell biology. J Carbohydr Chem. 2013;32(1):44–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murray-Segal L, Gock H, Cowan PJ, D’apice AJ. Anti-Gal antibody-mediated skin graft rejection requires a threshold level of Gal expression. Xenotransplantation. 2008;15:20–6.

    Article  PubMed  Google Scholar 

  67. Slomiany BL, Slomiany A, Horowitz MI. Characterization of blood-group-H-active ceramide tetrasaccharide from hog-stomach mucosa. Eur J Biochem. 1974;43:161–5.

    Article  CAS  PubMed  Google Scholar 

  68. Hara H, Long C, Lin YJ, et al. In vitro investigation of pig cells for resistance to human antibody-mediated rejection. Transpl Int. 2008;21:1163–74.

    Article  PubMed  Google Scholar 

  69. Christiansen D, Milland J, Mouhtouris E, Vaughan H, Pellicci DG. McConville of isoglobotrihexosylceramide in mammals. PNAS. 2007;104(14):5971–6.

    Google Scholar 

  70. Kiernan K, Harnden I, Gunthart M, Gregory C, Meisner J, Kearns-Jonker M. The anti-non-gal xenoantibody response to xenoantigens on gal knockout pig cells is encoded by a restricted number of germline progenitors. Am J Transplant. 2008;8(9):1829–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dor FJ, Tseng YL, Cheng J, Moran K, Sanderson TM, Lancos CJ, Shimizu A, Yamada K, Awwad M, Sachs DH, Hawley RJ, Schuurman HJ, Cooper DK. alpha1,3-galactosyltransferase geneknockout miniature swine produce natural cytotoxic anti-Gal antibodies. Transplantation. 2004;78(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  72. Brew K, Vanaman TC, Hill RL. The role of alpha-lactalbumin and the A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc Natl Acad Sci U S A. 1968;59(2):491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, He M, Cummings RD. Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci U S A. 2010;107(20):9228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yamaji T, Nishikawa K, Hanada K. Transmembrane BAX inhibitor motif containing (TMBIM) family proteins perturbs a trans-Golgi network enzyme, Gb3 synthase, and reduces Gb3 biosynthesis. J Biol Chem. 2010;285(46):35505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Darmoise A, Teneberg S, Bouzonville L, Brady RO, Beck M, Kaufmann SH, Winau F. Lysosomal alpha-galactosidase controls the generation of self lipid antigens for natural killer T cells. Immunity. 2010;33(2):216–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kleene R, Berger EG. The molecular and cell biology of glycosyltransferases. Biochim Biophys Acta. 1993;1154(3–4):283–325. Review

    Article  CAS  PubMed  Google Scholar 

  77. Porubsky S, Luckow B, Bonrouhi M, Speak A, Cerundolo V, Platt F, Gröne HJ. Glycosphingolipids Gb3 and iGb3. In vivo roles in hemolytic-uremic syndrome and iNKT cell function. Pathologe. 2008;29 Suppl 2:297–302. https://doi.org/10.1007/s00292-008-1040-0. German.

    Article  CAS  PubMed  Google Scholar 

  78. Lescar J, Loris R, Mitchell E, Gautier C, Chazalet V, Cox V, et al. Isolectins I-A and I-B of Griffonia (Bandeiraea) simplicifolia. Crystal structure of metal-free GS I-B(4) and molecular basis for metal binding and monosaccharide specificity. J Biol Chem. 2002;277:6608–14.

    Article  CAS  PubMed  Google Scholar 

  79. Milland J, Yuriev E, Xing PX, McKenzie IF, Ramsland PA, Sandrin MS. Carbohydrate residues downstream of the terminal Galalpha(1,3)Gal epitope modulate the specificity of xenoreactive antibodies. Immunol Cell Biol. 2007;85(8):623–32.

    Article  CAS  PubMed  Google Scholar 

  80. Ogiso M, Nishiyama I, Saito N, Okinaga T, Hoshi M, Komoto M. Localization of neutral and acidic glycosphingolipids in rat lens. Glycobiology. 1995;5:187–94.

    Article  CAS  PubMed  Google Scholar 

  81. Blanken WM, Van den Eijnden DH. Biosynthesis of terminal Gal alpha 1–3Gal beta 1–4GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide alpha 1–3-galactosyltransferase from calf thymus. J Biol Chem. 1985;260:12927–34.

    Article  CAS  PubMed  Google Scholar 

  82. Kronenberg M, Gapin L. Natural killer T cells: know thyself. Proc Natl Acad Sci U S A. 2007;104(14):5713–4. https://doi.org/10.1073/pnas.0701493104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schumann J, Mycko MP, Dellabona P, Casorati G, MacDonald HR. Cutting edge: influence of the TCR Vbeta domain on the selection of semi-invariant NKT cells by endogenous ligands. J Immunol. 2006;176(4):2064–8.

    Article  PubMed  Google Scholar 

  84. Pellicci DG, Clarke AJ, Patel O, Mallevaey T, Beddoe T, Le Nours J, Uldrich AP, McCluskey J, Besra GS, Porcelli SA, Gapin L, Godfrey DI, Rossjohn J. Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat Immunol. 2011;12(9):827–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheng JM, Dangerfield EM, Timmer MS, Stocker BL. A divergent approach to the synthesis of iGb3 sugar and lipid analogues via a lactosyl 2-azido-sphingosine intermediate. Org Biomol Chem. 2014;12(17):2729–36.

    Article  CAS  PubMed  Google Scholar 

  86. Dias BR, Rodrigues EG, Nimrichter L, Nakayasu ES, Almeida IC, Travassos LR. Identification of iGb3 and iGb4 in melanoma B16F10-Nex2 cells and the iNKT cell-mediated antitumor effect of dendritic cells primed with iGb3. Mol Cancer. 2009;8:116.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what’s in a name. Nat Rev Immunol. 2004;4:231–7.

    Article  CAS  PubMed  Google Scholar 

  88. Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 2004;114:1379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Morita M, Motoki K, Akimoto K, Natori T, Sakai T, et al. Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J Med Chem. 1995;38:2176–87.

    Article  CAS  PubMed  Google Scholar 

  90. Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, et al. CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med. 1998;188:1521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, et al. Lysosomal glycosphingolipid recognition by NKT cells. Science. 2004;306:1786–9.

    Article  CAS  PubMed  Google Scholar 

  92. Cheng L, Ueno A, Cho S, Im JS, Golby S, et al. Efficient activation of valpha14 invariant NKT cells by foreign lipid antigen is associated with concurrent dendritic cell-specific self recognition. J Immunol. 2007;178:2755–62.

    Article  CAS  PubMed  Google Scholar 

  93. Porubsky S, Speak AO, Luckow B, Cerundolo V, Platt FM, et al. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci U S A. 2007;104:5977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schumann J, Facciotti F, Panza L, Michieletti M, Compostella F, et al. Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolism. Eur J Immunol. 2007;37:1431–41.

    Article  CAS  PubMed  Google Scholar 

  95. Butler JR, Skill NJ, Priestman DL, Platt FM, Li P, Estrada JL, et al. Silencing the porcine iGb3s gene does not affect Galα3Gal levels or measures of anticipated pig to human and pig to primate acute rejection. Xenotransplantation. 2016;23(2):106–16.

    Google Scholar 

  96. Lutz AJ, Li P, Estrada JL, Sidner RA, Chihara RK, Downey SM, Burlak C, Wang ZY, Reyes LM, Ivary B, Yin F, Blankenship RL, Paris LL, Tector AJ. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation. 2013;20(1):27–35.

    Article  PubMed  Google Scholar 

  97. Yung GP, Schneider MK, Seebach JD. Immune responses to α1,3 galactosyltransferase knockout pigs. Curr Opin Organ Transplant. 2009;14:154–60.

    Article  Google Scholar 

  98. Sanderson JP, Brennan PJ, Mansour S, et al. CD1d protein structure determines species-selective antigenicity of isoglobotrihexosylceramide (iGb3) to invariant NKT cells. Eur J Immunol. 2013;43:815–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Butler JR, Skill NJ, Priestman DL, Platt FM, Li P, Estrada JL, Martens GR, Ladowski JM, Tector M, Tector AJ. Silencing the porcine iGb3s gene does not affect Galα3Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection. Xenotransplantation. 2016;23(2):106–16.

    Article  PubMed  Google Scholar 

  100. Gao B, Long C, Lee W, Zhang Z, Gao X, Landsittel D, Ezzelarab M, Ayares D, Huang Y, Cooper DKC, Wang Y, Hara H. Anti-Neu5Gc and anti-non-Neu5Gc antibodies in healthy humans. PLoS One. 2017;12(7):e0180768.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Blix FG, Gottschalk A, Klenk E. Proposed nomenclature in the field of neuraminic and sialic acids. Nature. 1957;179:1088.

    Article  CAS  PubMed  Google Scholar 

  102. Varki A, Schnaar RL, Schauer R. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH, editors. Sialic acids and other nonulosonic acids. Essentials of glycobiology [Internet]. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 15.2017.

    Google Scholar 

  103. Higashi H, Naiki M, Matsuo S, Okouchi K. Antigen of ‘serum sickness’ type of heterophile antibodies in human sera: identification as gangliosides with N-glycolylneuraminic acid. Biochem Biophys Res Commun. 1977;79:388.

    Article  CAS  PubMed  Google Scholar 

  104. Merrick JM, Zadarlik K, Milgrom F. Characterization of the Hanganutziu–Deicher (serum-sickness) antigen as gangliosides containing N-glycolylneuraminic acid. Int Arch Allergy Appl Immunol. 1978;57:477.

    Google Scholar 

  105. Bouhours D, Pourcel C, Bouhours JE. Simultaneous expression by porcine aorta endothelial cells of glycosphingolipids bearing the major epitope for human xenoreactive antibodies (Gal alpha 1-3Gal), blood group H determinant and N-glycolylneuraminic acid. Glycoconj J. 1996;13:947–53.

    Article  CAS  PubMed  Google Scholar 

  106. Miyagawa S, Maeda A, Kawamura T, et al. A comparison of the main structures of N-glycans of porcine islets with those from humans. Glycobiology. 2014;24:125–38.

    Article  CAS  PubMed  Google Scholar 

  107. Zhu A, Hurst R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation. 2002;9:376–81.

    Article  PubMed  Google Scholar 

  108. Miwa Y, Kobayashi T, Nagasaka T, et al. Are N-glycolylneuraminic acid (Hanganutziu-Deicher) antigens important in pig-to-human xenotransplantation? Xenotransplantation. 2004;11:247–53.

    Article  PubMed  Google Scholar 

  109. Varki A. Colloquium paper: uniquely human evolution of sialic acid genetics and biology. Proc Natl Acad Sci U S A. 2010;107(Suppl 2):8939–46. https://doi.org/10.1073/pnas.0914634107. Epub 2010 May 5.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Irie A, Koyama S, Kozutsumi Y, et al. The molecular basis for the absence of N-glycolylneuraminic acid in humans. J Biol Chem. 1998;273:15866–71.

    Article  CAS  PubMed  Google Scholar 

  111. Magnusson S, Mansson JE, Strokan V, et al. Release of pig leukocytes during pig kidney perfusion and characterization of pig lymphocyte carbohydrate xenoantigens. Xenotransplantation. 2003;10:432–45.

    Article  PubMed  Google Scholar 

  112. Saethre M, Baumann BC, Fung M, et al. Characterization of natural human antinon-Gal antibodies and their effect on activation of porcine Gal-deficient endothelial cells. Transplantation. 2007;84:244–50.

    Article  CAS  PubMed  Google Scholar 

  113. Basnet NB, Ide K, Tahara H, et al. Deficiency of N-glycolylneuraminic acid and Gala1–3Galb1–4GlcNAc epitopes in xenogeneic cells attenuates cytotoxicity of human natural antibodies. Xenotransplantation. 2010;17:440–8.

    Article  PubMed  Google Scholar 

  114. Torbidoni AV, Scursoni A, Camarero S, Segatori V, Gabri M, Alonso D, Chantada G, de Dávila MT. Immunoreactivity of the 14F7 Mab raised against N-glycolyl GM3 ganglioside in retinoblastoma tumours. Acta Ophthalmol. 2015;93(4):e294–300.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang X, Kiechle FL. Review: glycosphingolipids inhealth and disease. Ann Clin Lab Sci. 2004;34:3–13.

    PubMed  Google Scholar 

  116. Kobayashi T, Yokoyama I, Suzuki A, et al. Lack of antibody production against Hanganutziu–Deicher (HD) antigens with N-glycolylneuraminic acid in patients with porcine exposure history. Xenotransplantation. 2000;7:177.

    Article  CAS  PubMed  Google Scholar 

  117. Galili U. Anti-Gal antibody prevents xenotransplantation. Sci Med. 1998;5:28.

    CAS  Google Scholar 

  118. Wang ZY, Martens GR, Blankenship RL, Sidner RA, Li P, Estrada JL, et al. Eliminating xenoantigen expression on swine RBC. Transplantation. 2017;101:517–23.

    Article  CAS  PubMed  Google Scholar 

  119. Campanero-Rhodes MA, et al. N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol. 2007;81:12846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Song KH, Kwak CH, Jin UH, Ha SH, Park JY, Abekura F, Chang YC, Cho SH, Lee K, Chung TW, Ha KT, Lee YC, Kim CH. Housekeeping promoter 5’pcmah-2 of pig CMP-N-acetylneuraminic acid hydroxylase gene for NeuGc expression. Glycoconj J. 2016;33(5):779–88. https://doi.org/10.1007/s10719-016-9671-5.

    Article  CAS  PubMed  Google Scholar 

  121. Naito Y, Takematsu H, Koyama S, Miyake S, Yamamoto H, Fujinawa R, Sugai M, Okuno Y, Tsujimoto G, Yamaji T, Hashimoto Y, Itohara S, Kawasaki T, Suzuki A, Kozutsumi Y. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol Cell Biol. 2007;27:3008–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Taylor RE, Gregg CJ, Padler-Karavani V, et al. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med. 2010;207:1637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee W, Miyagawa Y, Long C, et al. Expression of NeuGc on pig corneas and its potential significance in pig corneal xenotransplantation. Cornea. 2016;35:105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lee W, Hara H, Cooper DK, Manji RA. Expression of NeuGc on pig heart valves. Xenotransplantation. 2015;22:153–4.

    Article  PubMed  Google Scholar 

  125. Scobie L, Padler-Karavani V, Le Bas-Bernardet S, et al. Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts. J Immunol. 2013;191:2907–15.

    Article  CAS  PubMed  Google Scholar 

  126. Springer SA, Diaz SL, Gagneux P. Parallel evolution of a self-signal: humans and new world monkeys independently lost the cell surface sugar Neu5Gc. Immunogenetics. 2014;66:671–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Song KH, Kang YJ, Jin UH, et al. Cloning and functional characterization of pig CMP-N-acetylneuraminic acid hydroxylase for the synthesis of N-glycolylneuraminic acid as the xenoantigenic determinant in pig-human xenotransplantation. Biochem J. 2010;427:179–88.

    Article  CAS  PubMed  Google Scholar 

  128. Butler JR, Paris LL, Blankenship RL, Sidner RA, Martens GR, Ladowski JM, et al. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers. Transplantation. 2016;100(3):571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Park JY, Park MR, Bui HT, et al. Alpha1,3-galactosyltransferase deficiency in germ-free miniature pigs increases N-glycolylneuraminic acids as the xenoantigenic determinant in pig-human xenotransplantation. Cell Reprogram. 2012;14:353–63.

    Article  CAS  PubMed  Google Scholar 

  130. Burlak C, Bern M, Brito AE, et al. N-linked glycan profiling of GGTA1/CMAH knockout pigs identifies new potential carbohydrate xenoantigens. Xenotransplantation. 2013;20:277–91.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lee W, Long C, Ramsoondar J, Ayares D, Cooper DK, Manji RA, Hara H. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation. 2016;23(5):370–80. https://doi.org/10.1111/xen.12254.

    Article  PubMed  Google Scholar 

  132. Samraj AN, Laubli H, Varki N, Varki A. Involvement of a non-human sialic acid in human cancer. Front Oncol. 2014;4:33.

    PubMed  PubMed Central  Google Scholar 

  133. Lofling JC, Paton AW, Varki NM, Paton JC, Varki A. A dietary non-human sialic acid may facilitate hemolytic-uremic syndrome. Kidney Int. 2009;76:140–4. https://doi.org/10.1038/ki.2009.131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yin J, et al. Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res. 2006;66:2937–45. https://doi.org/10.1158/0008-5472.CAN-05-2615.

    Article  CAS  PubMed  Google Scholar 

  135. Varki A. Potential impact of the nonhuman sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplantation. 2011;18:1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Padler-Karavani V, et al. Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Res. 2011;71:3352–63. https://doi.org/10.1158/0008-5472.CAN-10-4102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Padler-Karavani V, Yu H, Cao H, et al. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology. 2008;18:818–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dall’Olio F, Malagolini N, Chiricolo M, Trinchera M, Harduin-Lepers A. The expanding roles of the Sd(a)/cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2. Biochim Biophys Acta. 2014;1840(1):443–53.

    Article  PubMed  Google Scholar 

  139. Lo Presti L, Cabuy E, Chiricolo M, Dall’Olio F. Molecular cloning of the human beta1,4 N-acetylgalactosaminyltransferase responsible for the biosynthesis of the Sd(a) histo-blood group antigen: the sequence predicts a very long cytoplasmic domain. J Biochem. 2003;134(5):675–82.

    Article  CAS  PubMed  Google Scholar 

  140. Piller V, Piller F, Cartron JP. Comparison of the carbohydrate-binding specificities of seven N-acetyl-D-galactosamine-recognizing lectins. Eur J Biochem. 1990;191:461–6.

    Article  CAS  PubMed  Google Scholar 

  141. Kamada Y, Muramatsu H, Arita Y, et al. Structural studies on a binding site for Dolichos biflorus agglutinin in the small intestine of the mouse. J Biochem. 1991;109:178–83.

    Article  CAS  PubMed  Google Scholar 

  142. Byrne GW, Du Z, Stalboerger P, Kogelberg H, McGregor CG. Cloning and expression of porcine beta1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation. 2014;21:543–54.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Clausen H, Hakomori S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang. 1989;56:1–20.

    CAS  PubMed  Google Scholar 

  144. Cartron JP, Colin Y. Structural and functional diversity of blood group antigens. Transfus Clin Biol. 2001;8:163–99.

    Article  CAS  PubMed  Google Scholar 

  145. Byrne GW, Du Z, Stalboerger P, Kogelberg H, McGregor CG. Cloning and expression of porcine β1,4N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation. 2014;21:543–54.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Conte R, Serafini-Cessi F. Comparison between the erythrocyte and urinary Sda antigen distribution in a large number of individuals from Emilia-Romagna, a region of Northern Italy. Transfus Med. 1991;1:47–9.

    Article  CAS  PubMed  Google Scholar 

  147. Byrne G, Ahmad-Villiers S, Du Z, McGregor C. B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen. Xenotransplantation. 2018;25(5):e12394.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cazal P, Monis M, Caubel J, Brives J. Herediatry dominant polyagglutinability: private antigen (Cad) corresponding to a public antibody and a lectin of Dolichos biflorus. Rev Fr Transfus. 1968;11:209–21.

    Article  CAS  PubMed  Google Scholar 

  149. Tollefsen SE, Kornfeld R. The B4 lectin from Vicia villosa seeds interacts with N- acetylgalactosamine residues on erythrocytes with blood group Cad specificity. Biochem Biophys Res Commun. 1984;123:1099–106.

    Article  CAS  PubMed  Google Scholar 

  150. Sanger R, Gavin J, Tippett P, Teesdale P, Eldon K. Plant agglutinin for another human blood-group. Lancet. 1971;1:1130.

    Article  CAS  PubMed  Google Scholar 

  151. Herkt F, Parente JP, Leroy Y, Fournet B, Blanchard D, Cartron JP, Van Halbeek H, Vliegenthart JF. Structure determination of oligosaccharides isolated from Cad erythrocyte membranes by permethylation analysis and 500-MHz 1H-NMR spectroscopy. Eur J Biochem. 1985;146:125–9.

    Article  CAS  PubMed  Google Scholar 

  152. Gillard BK, Blanchard D, Bouhours JF, Cartron JP, Van Kuik JA, Kamerling JP, Vliegenthart JF, Marcus DM. Structure of a ganglioside with Cad blood group antigen activity. Biochemistry. 1988;27:4601–6.

    Article  CAS  PubMed  Google Scholar 

  153. Blanchard D, Piller F, Gillard B, Marcus D, Cartron JP. Identification of a novel ganglioside on erythrocytes with blood group Cad specificity. J Biol Chem. 1985;260:7813–6.

    Article  CAS  PubMed  Google Scholar 

  154. Piller F, Blanchard D, Huet M, Cartron JP. Identification of a α-NeuAc-(2–3)-β-Dgalactopyranosyl N- acetyl-β-D-galactosaminyltransferase in human kidney. Carbohydr Res. 1986;149:171–84.

    Article  CAS  PubMed  Google Scholar 

  155. Smith PL, Lowe JB. Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. J Biol Chem. 1994;269:15162–71.

    Article  CAS  PubMed  Google Scholar 

  156. Hidari JK, Ichikawa S, Furukawa K, Yamasaki M, Hirabayashi Y. β1–4Nacetylgalactosaminyltransferase can synthesize both asialoglycosphingolipid GM2 and glycosphingolipid GM2 in vitro and in vivo: isolation and characterization of a beta 1–4N-acetylgalactosaminyltransferase cDNA clone from rat ascites hepatoma cell line AH7974F. Biochem J. 1994;303(Pt 3):957–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dall’Olio F, Malagolini N, Di Stefano G, Ciambella M, Serafini-Cessi F. Postnatal development of rat colon epithelial cells is associated with changes in the expression of the β 1,4-N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen and of α 2,6-sialyltransferase activity towards N-acetyllactosamine. Biochem J. 1990;270:519–24.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kawamura YI, Toyota M, Kawashima R, Hagiwara T, Suzuki H, Imai K, et al. DNA hypermethylation contributes to incomplete synthesis of carbohydrate deter-minants in gastrointestinal cancer. Gastroenterology. 2008;135(142–51):e3.

    Google Scholar 

  159. Wang HR, Hsieh CY, Twu YC, Yu LC. Expression of the human Sd(a) beta-1,4-N-acetylgalactosaminyltransferase II gene is dependent on the promotermethylation status. Glycobiology. 2008;18:104–13.

    Article  CAS  PubMed  Google Scholar 

  160. Kawamura YI, Kawashima R, Fukunaga R, Hirai K, Toyama-Sorimachi N, Tokuhara M, et al. Introduction of Sd(a) carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res. 2005;65(14):6220–7.

    Article  CAS  PubMed  Google Scholar 

  161. Robbe-Masselot C, Herrmann A, Maes E, Carlstedt I, Michalski JC, Capon C. Expression of a core 3 disialyl-Lex hexasaccharide in human colorectal cancers: a potential marker of malignant transformation in colon. J Proteome Res. 2009;8:702–11.

    Article  CAS  PubMed  Google Scholar 

  162. Dohi T, Ohta S, Hanai N, Yamaguchi K, Oshima M. Sialylpentaosylceramide detected with anti-GM2 monoclonal antibody. Structural characterization and complementary expression with GM2 in gastric cancer and normal gastricmucosa. J Biol Chem. 1990;265:7880–5.

    Article  CAS  PubMed  Google Scholar 

  163. Rausch P, Steck N, Suwandi A, Seidel JA, Künzel S, Bhullar K, Basic M, Bleich A, Johnsen JM, Vallance BA, Baines JF, Grassl GA. Expression of the blood-group-related gene B4galnt2 alters susceptibility to Salmonella infection. PLoS Pathog. 2015;11(7):e1005008.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Serafini-Cessi F, Monti A, Cavallone D. N-glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. Glycoconj J. 2005;22(7–9):383–94. https://doi.org/10.1007/s10719-005-2142-z.

    Article  CAS  PubMed  Google Scholar 

  165. Blanchard D, Capon C, Leroy Y, Cartron JP, Fournet B. Comparative study of glycophorin a derived O-glycans from human cad, Sd(a+) and Sd(a-) erythrocytes. Biochem J. 1985;232(3):813–8. https://doi.org/10.1042/bj2320813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li YT, Li SC, Hasegawa A, Ishida H, Kiso M, Bernardi A, Brocca P, Raimondi L, Sonnino S. Structural basis for the resistance of Tay-Sachs ganglioside GM2 to enzymatic degradation. J Biol Chem. 1999;274(15):10014–8. https://doi.org/10.1074/jbc.274.15.10014.

    Article  CAS  PubMed  Google Scholar 

  167. Lowe JB. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol. 2003;15(5):531–8. Epub 2003/10/02

    Article  CAS  PubMed  Google Scholar 

  168. Kawamura YI, Adachi Y, Curiel DT, Kawashima R, Kannagi R, Nishimoto N, et al. Therapeutic adenoviral gene transfer of a glycosyltransferase for prevention of peritoneal dissemination and metastasis of gastric cancer. Cancer Gene Ther. 2014;21(10):427–33. Epub 2014/09/13. https://doi.org/10.1038/cgt.2014.46.

    Article  CAS  PubMed  Google Scholar 

  169. Trinchera M, Malagolini N, Chiricolo M, Santini D, Minni F, Caretti A, Dall’Olio F. The biosynthesis of the selectin-ligand sialyl Lewis x in colorectal cancer tissues is regulated by fucosyltransferase VI and can be inhibited by an RNA interference based approach. Int J Biochem Cell Biol. 2011;43:130–9.

    Article  CAS  PubMed  Google Scholar 

  170. Montiel MD, Krzewinski-Recchi MA, Delannoy P, Harduin-Lepers A. Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4-N-acetylgalactosaminyltransferaseresponsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain. Biochem J. 2003;373:369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Johnsen JM, Levy GG, Westrick RJ, Tucker PK, Ginsburg D. The endothelial-specific regulatory mutation, Mvwf1, is a common mouse founder allele. Mamm Genome. 2008;19(1):32–40. https://doi.org/10.1007/s00335-007-9079-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mohlke KL, Nichols WC, Westrick RJ, Novak EK, Cooney KA, Swank RT, et al. A novel modifier gene for plasma von Willebrand factor level maps to distal mouse chromosome 11. Proc Natl Acad Sci. 1996;93(26):15352–7. Epub 1996/12/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mohlke KL, Purkayastha AA, Westrick RJ, Smith PL, Petryniak B, Lowe JB, et al. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase. Cell. 1999;96(1):111–20. Epub 1999/02/16. https://doi.org/10.1016/S0092-8674(00)80964-2.

    Article  CAS  PubMed  Google Scholar 

  174. Johnsen JM, Teschke M, Pavlidis P, McGee BM, Tautz D, Ginsburg D, et al. Selection on cis-regulatory variation at B4galnt2 and its influence on von Willebrand factor in house mice. Mol Biol Evol. 2009;26(3):567–78. Epub 2008/12/18. https://doi.org/10.1093/molbev/msn284.

    Article  CAS  PubMed  Google Scholar 

  175. Staubach F, Künzel S, Baines AC, Yee A, McGee BM, Bäckhed F, et al. Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice. ISME J. 2012;6(7):1345–55. Epub 2012/01/27. http://www.nature.com/ismej/journal/vaop/ncurrent/suppinfo/ismej2011204s1.html

  176. Kimura A, Orn A, Holmquist G, Wigzell H, Ersson B. Unique lectin-binding characteristics of cytotoxic T lymphocytes allowing their distinction from natural killer cells and “K” cells. Eur J Immunol. 1979;9:575–8.

    Article  CAS  PubMed  Google Scholar 

  177. Conzelmann A, Kornfeld S. β-Linked N-acetylgalactosamine residues present at the nonreducing termini of O-linked oligosaccharides of a cloned murine cytotoxic T lymphocyte line are absent in a Vicia villosa lectin-resistant mutant cell line. J Biol Chem. 1984;259:12528–35.

    Article  CAS  PubMed  Google Scholar 

  178. Conzelmann A, Kornfeld S. Amurine cytotoxic T lymphocyte cell line resistant to Vicia villosa lectin is deficient in UDP-GalNAc: β-galactose β 1,4-Nacetylgalactosaminyltransferase. J Biol Chem. 1984;259:12536–42.

    Article  CAS  PubMed  Google Scholar 

  179. Conzelmann A, Lefrancois L. Monoclonal antibodies specific for T cell-associated carbohydrate determinants react with human blood group antigens CAD and SDA. J Exp Med. 1988;167:119–31.

    Article  CAS  PubMed  Google Scholar 

  180. Thomas PJ, Xu R, Martin PT. Mouse model of limb girdle muscular dystrophy 2IB4GALNT2 (GALGT2) gene therapy reduces skeletal muscle pathology in the FKRP P448L mouse model of limb girdle muscular dystrophy 2I. J Pathol. 2016;186:2429e2448. https://doi.org/10.1016/j.ajpath.2016.05.021.

    Article  CAS  Google Scholar 

  181. Blaeser A, Keramaris E, Chan YM, Sparks S, Cowley D, Xiao X, Lu QL. Mouse models of fukutin-related protein mutations show a wide range of disease phenotypes. Hum Genet. 2013;132(8):923–34. https://doi.org/10.1007/s00439-013-1302-7.

    Article  CAS  PubMed  Google Scholar 

  182. Topaloglu H, Brockington M, Yuva Y, Talim B, Haliloglu G, Blake D, Torelli S, Brown SC, Muntoni F. FKRP gene mutations cause congenital muscular dystrophy, mental retardation, and cerebellar cysts. Neurology. 2003;60:988–92.

    Article  CAS  PubMed  Google Scholar 

  183. Hoyte K, Kang C, Martin PT. Definition of pre- and postsynaptic forms of the CT carbohydrate antigen at the neuromuscular junction: ubiquitous expression of the CT antigens and the CT GalNAc transferase in mouse tissues. Brain Res Mol Brain Res. 2002;109:146–60.

    Article  CAS  PubMed  Google Scholar 

  184. Xu R, DeVries S, Camboni M, Martin PT. Overexpression of Galgt2 reduces dystrophic pathology in the skeletal muscles of alpha sarcoglycan-deficient mice. Am J Pathol. 2009;175:235–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Martens GR, Reyes LM, Butler JR, Ladowski JM, Estrada JL, Sidner RA, Eckhoff DE, Tector M, Tector AJ. Humoral reactivity of renal transplant-waitlisted patients to cells from GGTA1/CMAH/B4GalNT2, and SLA class I knockout pigs. Transplantation. 2017;101(4):e86–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Amorim I, Freitas DP, Magalhães A, Faria F, Lopes C, Faustino AM, et al. A comparison of helicobacter pylori and non-helicobacter pylori helicobacter spp. binding to canine gastric mucosa with defined gastric glycophenotype. Helicobacter. 2014;19(4):249–59.

    Article  PubMed  Google Scholar 

  187. Kaoutari AE, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Micro. 2013;11(7):497–504. https://doi.org/10.1038/nrmicro3050. Epub 2013/06/12 http://www.nature.com/nrmicro/journal/v11/n7/abs/nrmicro3050.html#supplementary-information.

    Article  CAS  Google Scholar 

  188. Bosshard PP, Zbinden R, Altwegg M. Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, gram-positive bacterium. Int J Syst Evol Microbiol. 2002;52(4):1263–6. Epub 2002/08/01. https://doi.org/10.1099/00207713-52-4-1263.

    Article  CAS  PubMed  Google Scholar 

  189. Weiss GA, Chassard C, Hennet T. Selective proliferation of intestinal Barnesiella under fucosyllactose supplementation in mice. Br J Nutr. 2014;111:1–9. Epub 2014/01/15. https://doi.org/10.1017/S0007114513004200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, CH. (2024). Non-α1,3Gal Carbohydrate Antigenic Epitopes. In: Glycoimmunology in Xenotransplantation. Springer, Singapore. https://doi.org/10.1007/978-981-99-7691-1_11

Download citation

Publish with us

Policies and ethics