Skip to main content

DSQA-LLM: Domain-Specific Intelligent Question Answering Based on Large Language Model

  • Conference paper
  • First Online:
AI-generated Content (AIGC 2023)

Abstract

Question Answering (QA) is crucial for humans to access vast knowledge bases, but there is a lack of attention towards representing raw, unstructured questions and answers in specific fields. Additionally, the efficiency of finding candidate questions based on the trigger question and the generation of reasonable answers have been neglected. In this paper, we introduce Domain Specific Question Answering Language Model (DSQA-LLM), a framework that delivers informative answers within a specific domain. We utilize techniques like question classification, information retrieval, and answer generation. We enhance efficiency and accuracy through the integration of XLNET for question classification and a novel similarity searching method using Sentence-T5. Furthermore, the powerful GPT-3.5-turbo is employed for generating coherent answers. We implemented DSQA-LLM and curated a dataset of 127,840 question-answer pairs. Empirical experiments conducted on real-world questions confirm the effectiveness of our QA system.

D. Huang, Z. Wei and A. Yue—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Chapter  Google Scholar 

  2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  3. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  4. Zhou, P., Qi, Z., Zheng, S., et al.: Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling. arXiv preprint arXiv:1611.06639 (2016)

  5. Yang, Z., et al.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2016)

    Google Scholar 

  6. Lan, Z., Chen, M., Goodman, S., et al.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)

  7. Lewis, M., Liu, Y., Goyal, N., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019)

  8. Gao, T., Yao, X., Chen, D.: SimCSE: simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021)

  9. Ni, J., Ábrego, G.H., Constant, N., et al.: Sentence-T5: scalable sentence encoders from pre-trained text-to-text models. arXiv preprint arXiv:2108.08877 (2021)

  10. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

  11. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Cer, D., Yang, Y., Kong, S., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)

  13. Radford, A., Narasimhan, K., Salimans, T., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  14. Devlin, J., Chang, M.W., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  15. Yang, Z., Dai, Z., et al.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  16. Dai, Z., Yang, Z., Yang, Y., et al.: Transformer-XL: attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860 (2019)

  17. Liu, Y., Ott, M., Goyal, N., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  18. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. arXiv preprint arXiv:1908.08345 (2019)

  19. Goyal, T., Li, J.J., Durrett, G.: News summarization and evaluation in the era of GPT-3. arXiv preprint arXiv:2209.12356 (2022)

  20. Luo, Z., Xie, Q., Ananiadou, S.: ChatGPT as a factual inconsistency evaluator for abstractive text summarization. arXiv preprint arXiv:2303.15621 (2023)

  21. Du, Z., Qian, Y., Liu, X., et al.: GLM: general language model pretraining with autoregressive blank infilling. arXiv preprint arXiv:2103.10360 (2021)

  22. Touvron, H., Lavril, T., Izacard, G., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  23. Cho, K., Van Merriënboer, B., Gulcehre, C., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  24. Nallapati, R., Zhou, B., Gulcehre, C., et al.: Abstractive text summarization using sequence-to-sequence RNNs and beyond. arXiv preprint arXiv:1602.06023 (2016)

  25. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text summarization Branches Out, pp. 74–81 (2004)

    Google Scholar 

  26. Zhang, H., Liu, X., Zhang, J.: Extractive summarization via chatGPT for faithful summary generation. arXiv preprint arXiv:2304.04193 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, D. et al. (2024). DSQA-LLM: Domain-Specific Intelligent Question Answering Based on Large Language Model. In: Zhao, F., Miao, D. (eds) AI-generated Content. AIGC 2023. Communications in Computer and Information Science, vol 1946. Springer, Singapore. https://doi.org/10.1007/978-981-99-7587-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7587-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7586-0

  • Online ISBN: 978-981-99-7587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics