Skip to main content

Deep Encoder-Decoder Structure for Cloud Image Segmentation

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1033))

  • 120 Accesses

Abstract

Deep learning makes remarkable progress in the application of remote sensing image processing, particularly in the cloud image segmentation field. The encoder-decoder structure in deep learning is widely employed for cloud image segmentation tasks. The encoder extracts high-level semantic features from the input cloud image, while the decoder restores the semantic features to generate pixel-level segmentation results. Furthermore, skip connections are adopted to connect the encoder and the decoder. In this paper, we introduce and evaluate the representative encoder-decoder struture methods for cloud image segmentation. We focus on the design of encoder, decoder and skip connections. We conduct comparative experiments on cloud image datasets and analyze the encoder-decoder structure with different layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long CN, Sabburg JM, Calbó J, Pagès D (2006) Retrieving cloud characteristics from ground-based daytime color all-sky images. J Atmos Oceanic Technol 23(5):633–652

    Article  Google Scholar 

  2. Wang Y, Wang C, Shi C, Xiao B (2018) A selection criterion for the optimal resolution of ground-based remote sensing cloud images for cloud classification. IEEE Trans Geosci Remote Sens 57(3):1358–1367

    Article  Google Scholar 

  3. Xie W, Liu D, Yang M, Chen S, Wang B, Wang Z, Xia Y, Liu Y, Wang Y, Zhang C (2020) Segcloud: a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation. Atmos Measure Tech 13(4):1953–1961

    Article  Google Scholar 

  4. Liu S, Zhang J, Zhang Z, Cao X, Durrani TS (2022) Transcloudseg: ground-based cloud image segmentation with transformer. IEEE J Selec Topics Appl Earth Observ Remote Sens 15:6121–6132

    Article  Google Scholar 

  5. Wang Y, Wang C, Shi C, Xiao B (2018) Joint encoding lbp features from infrared and visible-light cloud image observations for ground-based cloud classification. In: IEEE International geoscience and remote sensing symposium, pp 4993–4996

    Google Scholar 

  6. Zhang Z, Yang S, Liu S, Xiao B, Cao X (2022) Ground-based cloud detection using multiscale attention convolutional neural network. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  7. Kreuter A, Zangerl M, Schwarzmann M, Blumthaler M (2009) All-sky imaging: a simple, versatile system for atmospheric research. Appl Opt 48(6):1091–1097

    Article  Google Scholar 

  8. Taravat A, Del Frate F, Cornaro C, Vergari S (2014) Neural networks and support vector machine algorithms for automatic cloud classification of whole-sky ground-based images. IEEE Geosci Remote Sens Lett 12(3):666–670

    Article  Google Scholar 

  9. Allmen MC, Kegelmeyer WP Jr (1996) The computation of cloud-base height from paired whole-sky imaging cameras. J Atmos Oceanic Tech 13(1):97–113

    Article  Google Scholar 

  10. Fikriansyah MN, Nugroho HA, Sinambela M (2022) Low cloud type classification system using convolutional neural network algorithm. In: International conference on informatics and computing, pp 1–6

    Google Scholar 

  11. Lai C, Liu T, Mei R, Wang H, Hu S (2019) The cloud images classification based on convolutional neural network. In: International conference on meteorology observations, pp 1–4

    Google Scholar 

  12. Shi C, Wang Y, Wang C, Xiao B (2017) Ground-based cloud detection using graph model built upon superpixels. IEEE Geosci Remote Sens Lett 14(5):719–723

    Article  Google Scholar 

  13. Yang J, Lu W, Ma Y, Yao W (2012) An automated cirrus cloud detection method for a ground-based cloud image. J Atmos Oceanic Tech 29(4):527–537

    Article  Google Scholar 

  14. Dev S, Nautiyal A, Lee YH, Winkler S (2019) Cloudsegnet: a deep network for nychthemeron cloud image segmentation. IEEE Geosci Remote Sens Lett 16(12):1814–1818

    Article  Google Scholar 

  15. Qi H, Yuan J, Li L, Ren J, Liang J (2019) A infrared cloud image simulation method for cloud segmentation network training. Int Appl Comput Electromag Soc Sympo 1:1–2

    Google Scholar 

  16. Liu S, Zhang J, Zhang Z, Cao X, Durrani TS (2023) Integration transformer for ground-based cloud image segmentation. IEEE Trans Geosci Remote Sens 61:1–12

    Article  Google Scholar 

  17. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE Conference on computer vision and pattern recognition, pp 3431–3440

    Google Scholar 

  18. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Med Image Comput Comput Assist Inter 234–241

    Google Scholar 

  19. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: IEEE Conference on computer vision and pattern recognition, pp 6230–6239

    Google Scholar 

  20. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, pp 770–778

    Google Scholar 

  21. Shi W, Caballero J, Theis L, Huszar F, Aitken A, Ledig C, Wang Z (2016) Is the deconvolution layer the same as a convolutional layer? arXiv preprint arXiv:1609.07009

  22. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122

  23. Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: International conference on machine learning, pp 1139–1147

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No. 62171321, Natural Science Foundation of Tianjin under Grant No. 22JCQNJC00010, the Scientific Research Project of Tianjin Educational Committee under Grant No. 2022KJ011, and University Training Program of Innovation and Entrepreneurship for Undergraduates under Grant No. 202310065423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Liu, Y., Li, X., Ren, J., Niu, X., Liu, S. (2024). Deep Encoder-Decoder Structure for Cloud Image Segmentation. In: Wang, W., Liu, X., Na, Z., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2023. Lecture Notes in Electrical Engineering, vol 1033. Springer, Singapore. https://doi.org/10.1007/978-981-99-7502-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7502-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7555-6

  • Online ISBN: 978-981-99-7502-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics