Skip to main content

Cell Cycle, DNA Damage Repair Systems, and Impact of Redox Regulation in Cancer

  • Chapter
  • First Online:
Redox Regulation and Therapeutic Approaches in Cancer
  • 89 Accesses

Abstract

This chapter entitled “Cell Cycle, DNA Damage Repair Systems, and Impact of Redox Regulation in Cancer” introduces the cell cycle components in normal cells and further discusses regulators involvement in cell cycle checkpoints, cyclin-CDK interaction, and activation. Cell cycle inhibitors, transcription regulatory network, redox oscillation, and metabolic activity in cell cycle were discussed. All these events are further examined in the context of cancer cells, highlighting the differences from normal cell situations.

Further, the DNA damage repair system with repair pathways involving various enzymatic systems has been described. Oxidative stress inducing genomic instability and cancer development has been introduced. Apurinic/apyrimidinic 1 (APE1) and oxidative DNA damage repair have been discussed, focusing on their dual action as repair and redox reactions. The impact of redox reaction in DNA repair, DNA damage response (DDR), and cancer therapy strategies has been discussed at length. PARP inhibitors of DDR, other inhibitors such as ATM, ATR, and DNA-PKCs (regulation of DDR signaling), and further involvement of synthetic lethality concept for cancer therapy have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbotts R, Wilson DM (2017) III coordination of DNA single strand break repair. Free Radic Biol Med 107:228–244

    Article  CAS  PubMed  Google Scholar 

  • Almeida A, Bolanos JP, Moncada S (2010) E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci U S A 107:738–741

    Article  CAS  PubMed  Google Scholar 

  • Altieri F, Grillo C, Maceroni M, Chichiarelli S (2008) DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal 10:891–937

    Article  CAS  PubMed  Google Scholar 

  • Ando K, Hirao S, Kabe Y, Ogura Y, Sato I et al (2008) A new APE1/Ref-1-dependent pathway leading to reduction of NF-kappaB and AP-1, and activation of their DNA-binding activity. Nucleic Acids Res 36:4327–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andor N, Maley CC, Ji HP (2017) Genomic instability in cancer: teetering on the limit of tolerance. Cancer Res 77:2179–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angkeow P, Deshpande SS, Qi B, Liu YX, Park YC, Jeon BH et al (2002) Redox factor-1: an extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ 9:717–725

    Article  CAS  PubMed  Google Scholar 

  • Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML, Garcia-Manyes S, Eggert US (2014) Dividing cells regulate their lipid composition and localization. Cell 156:428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwooll C, Lazzerini Denchi E, Helin K (2004) The E2F family: specific functions and overlapping interests. EMBO J 23:4709–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam S, Jouvet N, Jilani A, Vongsamphanh R, Yang X, Yang S, Ramotar D (2008) Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Biol Chem 283:30632–30641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagella L, Sun A, Tonini T, Abbadessa G, Cottone G, Paggi MG, DeLuca A, Claudio PP, Giordano A (2007) A small molecule based on the pRb2/p130 spacer domain leads to inhibition of cdk2 activity, cell cycle arrest and tumor growth reduction in vivo. Oncogene 26:1829–1939

    Article  CAS  PubMed  Google Scholar 

  • Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88

    Article  CAS  PubMed  Google Scholar 

  • Bapat A, Fishel ML, Kelley MR (2009) Going ape as an approach to cancer therapeutics. Antioxid Redox Signal 11:651–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bapat A, Glass LS, Luo M, Fishel ML, Long EC, Georgiadis MM et al (2010) Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J Pharmacol Exp Ther 334:988–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barford D (2011) Structure, function and mechanism of the anaphase promoting complex (APC/C). Q Rev Biophys 44:153–190

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  PubMed  Google Scholar 

  • Barnum KJ, O’Connell MJ (2014) Cell cycle regulation by checkpoints. Methods Mol Biol 1170:29–40

    Article  PubMed Central  Google Scholar 

  • Barriere C, Santamaria D, Cerqueira A, Galan J, Martin A, Ortega S et al (2007) Mice thrive without Cdk4 and Cdk2. Mol Oncol 1:72–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barzilay G, Hickson ID (1995) Structure and function of apurinic/apyrimidinic endonucleases. BioEssays 17:713–719

    Article  CAS  PubMed  Google Scholar 

  • Bennett RAO, Wilson DM, Wong D, Demple B (1997) Interaction of human apurinic endonuclease and DNA polymerase β in the base excision repair pathway. Proc Natl Acad Sci U S A 94:7166–7169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakat KK, Mantha AK, Mitra S (2009) Transcriptional regulatory functions of mammalian AP-endonuclease (APE1/Ref-1), an essential multifunctional protein. Antioxid Redox Signal 11:621–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blain SW (2008) Switching cyclin D-Cdk4 kinase activity on and off. Cell Cycle 7:892–898

    Article  CAS  PubMed  Google Scholar 

  • Blanchet E, Annicotte JS, Lagarrigue S, Aguilar V, Clapé C, Chavey C, Fritz V, Casas F, Apparailly F, Auwerx J et al (2011) E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol 13:1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Boonstra J, Post JA (2004) Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337:1–13

    Article  CAS  PubMed  Google Scholar 

  • Boren J, Montoya AR, de Atauri P, Comin-Anduix B, Cortes A, Centelles JJ et al (2002) Metabolic control analysis aimed at the ribose synthesis pathways of tumor cells: a new strategy for antitumor drug development. Mol Biol Rep 29:7–12

    Article  CAS  PubMed  Google Scholar 

  • Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12:587–598

    Article  CAS  PubMed  Google Scholar 

  • Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9:297–308

    Article  CAS  PubMed  Google Scholar 

  • Brenerman BM, Illuzzi JL, Wilson DM 3rd (2014) Base excision repair capacity in informing healthspan. Carcinogenesis 35:2643–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JS, O’Carrigan B, Jackson SP, Yap TA (2016) Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov 7:1–18

    Google Scholar 

  • Brown JS, O’Carrigan B, Jackson SP, Yap TA (2017) Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov 7:20–37

    Article  CAS  PubMed  Google Scholar 

  • Buettner GR, Ng CF, Wang M, Rodgers VG, Schafer FQ (2006) A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med 41:1338–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukhari AB, Lewis CW, Pearce JJ, Luong D, Chan GK, Gamper AM (2019) Inhibiting Wee1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis. J Clin Invest 129:1329–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Burch PM, Heintz NH (2005) Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal 7:741–751

    Article  CAS  PubMed  Google Scholar 

  • Burch PM, Yuan Z, Loonen A, Heintz NH (2004) An extracellular signal-regulated kinase 1- and 2-dependent program of chromatin trafficking of c-Fos and Fra-1 is required for cyclin D1 expression during cell cycle re-entry. Mol Cell Biol 24:4696–4709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger K, Gullerova M (2015) Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 16:417–430

    Article  CAS  PubMed  Google Scholar 

  • Burger K, Schlackow M, Potts M, Hester S, Mohammed S, Gullerova M (2017) Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage. J Cell Biol 216:2373–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burhans WC, Heintz NH (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 47:1282–1293

    Article  CAS  PubMed  Google Scholar 

  • Cadet J, Douki T, Ravanat JL (2015) Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 91:140–155

    Article  CAS  PubMed  Google Scholar 

  • Caldecott KW (2014) DNA single-strand break repair. Exp Cell Res 329:2–8

    Article  CAS  PubMed  Google Scholar 

  • Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, Young R, Kluger Y, Dynlacht BD (2004) A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell 16:399–411

    Article  CAS  PubMed  Google Scholar 

  • Canaverse M, Santo L, Raje N (2012) Cyclin dependent kinase in cancer. Cancer Biol Ther 13:451–457

    Article  Google Scholar 

  • Canbay E, Agachan B, Gulluoglu M, Isbir T, Balik E, Yamaner S et al (2010) Possible associations of APE1 polymorphism with susceptibility and HOGG1 polymorphism with prognosis in gastric cancer. Anticancer Res 30:1359–1364

    CAS  PubMed  Google Scholar 

  • Cao Q, Qin C, Meng X, Ju X, Ding Q, Wang M et al (2011) Genetic polymorphisms in APE1 are associated with renal cell carcinoma risk in a Chinese population. Mol Carcinog 50:863–870

    Article  CAS  PubMed  Google Scholar 

  • Caputo F, Vegliante R, Ghibelli L (2012) Redox modulation of DNA damage response. Biochem Pharmacol 34:1292–1306

    Article  Google Scholar 

  • ChamperisTsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S (2014) Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 30:174–180

    Article  CAS  Google Scholar 

  • Chen HH, Wang YC, Fann MJ (2006) Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol 26:2736–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HH, Wong YH, Geneviere AM, Fann MJ (2007) CDK13/CDC2L5 interacts with L-type cyclins and regulates alternative splicing. Biochem Biophys Res Commun 354:735–740

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Xiong GS, Wu S, Mo J (2012) Downregulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 enhances the sensitivity of human pancreatic cancer cells to radiotherapy in vitro. Cancer Biother Radiopharm 28:169–176

    CAS  PubMed  Google Scholar 

  • Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF et al (1999) The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18:1571–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi W, Lee ES (2022) Therapeutic targeting of DNA damage response in cancer. Int J Mol Sci 23:1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Joo HK, Jeon BH (2016) Dynamic regulation of APE1?Ref1 as a therapeutic target protein. Chonnam Med J 52:75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193:3–34

    Article  CAS  PubMed  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo SL, Palacios-Callender M, Frakich N, De Leon J, Schmitt CA, Boorn L et al (2010) Anaphase-promoting complex/cyclosome-Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes. Proc Natl Acad Sci U SA 107:18868–18873

    Article  CAS  Google Scholar 

  • Colombo SL, Palacios-Callender M, Frakich N, Carcamo S, Kovacs I, Tudzarova S, Moncada S (2011) Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc Natl Acad Sci U S A 108:21069–21074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comin-Anduix B, Boren J, Martinez S, Moro C, Centelles JJ, Trebukhina R et al (2001) The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. Eur J Biochem 268:4177–4182

    Article  CAS  PubMed  Google Scholar 

  • Cornell R, Grove GL, Rothblat GH, Horwitz AF (1977) Lipid requirement for cell cycling. The effect of selective inhibition of lipid synthesis. Exp Cell Res 109:299–307

    Article  CAS  PubMed  Google Scholar 

  • Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12:801–817

    Article  CAS  PubMed  Google Scholar 

  • Cyr AR, Domann FE (2011) The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15:551–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Adda di Fagagna F (2014) A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol 24:171–178

    Article  PubMed  Google Scholar 

  • Dali-Youcef N, Mataki C, Coste A, Messaddeq N, Giroud S, Blanc S, Koehl C, Champy MF, Chambon P, Fajas L et al (2007) Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proc Natl Acad Sci U S A 104:10703–10708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darville MI, Rousseau GG (1997) E2F-dependent mitogenic stimulation of the splicing of transcripts from an S phase-regulated gene. Nucleic Acids Res 25:2759–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darville MI, Antoine IV, Mertens-Strijthagen JR, Dupriez VJ, Rousseau GG (1995) An E2F-dependent late-serum-response promoter in a gene that controls glycolysis. Oncogene 11:1509–1517

    CAS  PubMed  Google Scholar 

  • DeBont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169–185

    Article  CAS  Google Scholar 

  • DeRosa V, Erkekoglu P, Forestier A, Favier A, Hincal F, Diamond AM, Douki T, Rachidi W (2012) Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells. Free Radic Res 46:105–115

    Article  CAS  Google Scholar 

  • Dianova II, Bohr VA, Dianov GL (2001) Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. Biochemistry 40:12639–12644

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M (2013) Targeting cell cycle regulation in cancer therapy. Parmaco Ther 138:255–271

    Article  CAS  Google Scholar 

  • Dijk M, Typas D, Mullenders L, Pines A (2014) Insight in the multilevel regulation of NER. Exp Cell Res 329:116–123

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu M (2012) Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 327:26–47

    Article  CAS  PubMed  Google Scholar 

  • Doetsch PW, Cunningham RP (1990) The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res 236:173–201

    Article  CAS  PubMed  Google Scholar 

  • Domingo-Sananes MR, Kapuy O, Hunt Y, Novak B (2011) Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis. Philos Trans R Soc B 366:3584–3594

    Article  CAS  Google Scholar 

  • Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW (2015) Targeting mitosis in cancer: emerging strategies. Mol Cell 60:524–536

    Article  CAS  PubMed  Google Scholar 

  • Dong P, Maddali MV, Srimani JK, Thelot E, Navina JR, Mathey-Prevot B, You L (2014) Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control. Nat Commun 5:4750. 11 pages

    Article  CAS  PubMed  Google Scholar 

  • Drosos Y, Escobar D, Chiang MY, Roys K, Valentine V et al (2017) ATM-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer. Sci Rep 7:11144. 14 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunphy WG, Kumagai A (1991) The cdc25 protein contains an intrinsic phosphatase activity. Cell 67:189–196

    Article  CAS  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  • Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K et al (1999) Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18:1905–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estevez-Garcia IO, Cordobo-Gonzalez V, Lara-Padilla E, Fuentes-Toledo A, Falfain-Valenda R, Campose-Rodriguez R, Abarca-Rojano E (2014) Glucose and glutamine metabolism control by APC and SCF during the G1-to –S phase transition of the cell cycle. J Physiol Biochem 70:569–581

    Article  CAS  PubMed  Google Scholar 

  • Evans AR, Limp-Foster M, Kelley MR (2000) Going APE. Over ref-1. Mutat Res 461:83–108

    Article  CAS  PubMed  Google Scholar 

  • Fishel ML, He Y, Reed AM, Chin-Sinex H, Hutchins GD, Mendonca MS, Kelley MR (2008) Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and tumor growth. DNA Repair (Amst) 7:177–186

    Article  CAS  PubMed  Google Scholar 

  • Fleck O, Nielsen O (2004) DNA repair. J Cell Sci 117:515–517

    Article  CAS  PubMed  Google Scholar 

  • Francia S, Michelini F, Saxena A, Tang D, deHoon M et al (2012) Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francia S, Cabrini M, Matti V, Oldani A, d’Adda di Fagagna F (2016) DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors. J Cell Sci 129:1468–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz G, Kaina B (1999) Phosphorylation of the DNA repair protein APE/REF-1 by CKII affects redox regulation of AP-1. Oncogene 18:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Fruehauf JP, Meyskens FL (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13:789–794

    Article  CAS  PubMed  Google Scholar 

  • Gabrielli B, Brooks K, Pavey S (2012) Defective cell cycle checkpoints as targets for anti-cancer therapies. Front Pharmacol 3:9. 6 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaiddon C, Moorthy NC, Prives C (1999) Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J 18:5609–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Kepp O, Tajeddine N, Kroemer G (2008) Disruption of the hexokinase-VDAC complex for tumor therapy. Oncogene 27:4633–4635

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Wei W, Li MM, Wu YS, Ba Z et al (2014) Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Res 24:532–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavande NS, VanderVere-Carozza HHD, Jalal SI, Sears CR, Pawelczak KS, Turchi JJ (2016) DNA repair targeted therapy: the past or future of cancer treatment? Pharmaco Ther 160:65–83

    Article  CAS  Google Scholar 

  • Gederaas OA, Søgaard CD, Viset T, Bachke S, Bruheim P, Arum CJ, Otterlei M (2014) Increased anticancer efficacy of intravesical mitomycin C therapy when combined with a PCNA targeting peptide. Transl Oncol 7:812–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Giola U, Francia S, Cabrini M, Brambillasca S, Michelini F, Jones-Weinert CW, Adda di Fagagna F (2019) Pharmacoligical boost of DNA damage response and repair by enhanced biogenesis of DNA damage response RNAs. Sci Rep 9:6460. 15 pages

    Article  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    Article  CAS  PubMed  Google Scholar 

  • Goldenson B, Crispino JD (2015) The aurora kinases in cell cycle and leukemia. Oncogene 34:537–545

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Hayashi R, Kang D, Yoshida K (2006) Acute loss of transcription factor E2F1 induces mitochondrial biogenesis in HeLa cells. J Cell Physiol 209:923–934

    Article  CAS  PubMed  Google Scholar 

  • Graf F, Koehler L, Kniess T, Wuest F, Mosch B, Pietzsch J (2009) Cell cycle regulating kinase Cdk4 as a potential target for tumor cell treatment and tumor imaging. J Oncol 2009:106378

    Article  PubMed  PubMed Central  Google Scholar 

  • Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11:211–219

    CAS  PubMed  Google Scholar 

  • Grollman AP, Moriya M (1993) Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet 9:246–249

    Article  CAS  PubMed  Google Scholar 

  • Grösch S, Kaina B (1999) Transcriptional activation of apurinic/apyrimidinic endonuclease (ape, Ref-1) by oxidative stress requires CREB. Biochem Biophys Res Commun 261:859–863

    Article  PubMed  Google Scholar 

  • Guetens G, De Boeck G, Highley M, van Oosterom AT, de Bruijn EA (2002) Oxidative DNA damage: biological significance and methods of analysis. Crit Rev Clin Lab Sci 39:331–457

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    Article  CAS  PubMed  Google Scholar 

  • Hajas G, Bacsi A, Aguilera-Aguirre L, Hegde M, Tapas KH et al (2013) Free radical biology and medicine 8-oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1. Free Radic Biol Med 61:384–394

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Havens CG, Ho A, Yoshioka N, Dowdy SF (2006) Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. Mol Cell Biol 26:4701–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47

    Article  CAS  PubMed  Google Scholar 

  • Hegde ML, Mantha AK, Hazra TK, Bhakat KK, Mitra S, Szczesny B (2012) Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev 133:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde ML, Hegde PM, Bellot LJ, Mandal SM, Hazra TK, Li GM, Boldogh I, Tomkinson AE, Mitra S (2013) Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins. Proc Natl Acad Sci U S A 110:E3090–E3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 94:3633–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274:27891–27897

    Article  CAS  PubMed  Google Scholar 

  • Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA (2011) Activation of p21-dependent G1/G2 arrest in the absence of DNA damage as an antiapoptotic response to metabolic stress. Genes Cancer 2:889–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeijmakers JH (2001a) DNA repair mechanisms. Maturitas 38:17–22

    Article  CAS  PubMed  Google Scholar 

  • Hoeijmakers JH (2001b) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  CAS  PubMed  Google Scholar 

  • House NCM, Koch MR, Freudenreich CH (2014) Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 5:296. 18 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Hromas R, Wray J, Lee SH, Martinez L, Farrington J, Corwin LK, Ramsey H, Nickoloff JA, Williamson EA (2008) The human set and transposase domain protein Metnase interacts with DNA ligase IV and enhances the efficiency and accuracy of non-homologous end-joining. DNA Repair (Amst) 7:1927–1937

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MM, Hegde V, Kelley MR, Deutsch WA (2001) Activation of APE/Ref-1 redox activity is mediated by reactive oxygen species and PKC phosphorylation. Nucleic Acids Res 29:3116–3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh MC, Das D, Sambandam N, Zhang MQ, Nahle Z (2008) Regulation of the PDK4 isozyme by the Rb-E2F1 complex. J Biol Chem 283:27410–27417

    Article  CAS  PubMed  Google Scholar 

  • Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I et al (2004) p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 64:2350–2356

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH, Hwang IS, Liu QH, Woo ER, Lee DG (2012) (+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie 94:1784–1793

    Article  CAS  PubMed  Google Scholar 

  • Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M et al (2003) Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P) H oxidase. J Am Soc Nepherol 14:s227–s232

    Article  CAS  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson EB, Theriot CA, Chattopadhyay R, Mitra S, Izumi T (2005) Analysis of nuclear transport signals in the human apurinic/apyrimidinic endonuclease (APE1/Ref1). Nucleic Acids Res 33:3303–3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jedinak A, Dudhgaonkar S, Kelley MR, Sliva D (2011) Apurinic/Apyrimidinic endonuclease 1 regulates inflammatory response in macrophages. Anticancer Res 31:379–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37:503–517

    Article  CAS  PubMed  Google Scholar 

  • Jeon BH, Gupta G, Park YC, Qi B, Haile A, Khanday FA et al (2004) Apurinic/apyrimidinic endonuclease 1 regulates endothelial NO production and vascular tone. Circ Res 95:902–910

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M et al (2011a) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang A, Gao H, Kelley MR, Qiao X (2011b) Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo. Vis Res 51:93–100

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Shan J, Dai N, Zhong Z, Qing Y, Yang Y et al (2015) Apurinic/apyrimidinic endonuclease 1 regulates angiogenesis in a transforming growth factor β-dependent manner in human osteosarcoma. Cancer Sci 106:1394–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    Article  CAS  PubMed  Google Scholar 

  • Jurkovicova D, Neophytou CM, Gasparovic AC, Goncalves AC (2022) DNA damage response in cancer therapy and resistance: challenges and opportunities. Int J Mol Sci 23:14672. 32 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaelin WG Jr (2009) Synthetic lethality: a framework for the development of wiser cancer therapeutics. Genome Med 1:99. 6 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6:1079–1099

    Article  CAS  PubMed  Google Scholar 

  • Kalen AL, Sarsour EH, Venkataraman S, Goswami PC (2006) Mn-superoxide dismutase overexpression enhances G2 accumulation and radioresistance in human oral squamous carcinoma cells. Antioxid Redox Signal 8:1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Kalucka J, Missiaen R, Georgiadon M, Schoors S, Lange C, DeBock R, Dewerchin M, Carmeher P (2015) Metabolic control of the cell cycle. Cell Cycle 14:3379–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantidze OL, Velichko AK, Luzhin AV, Petrova NV, Razin SV (2018) Synthetically lethal interactions of ATM, ATR, and DNA-PKcs. Trends Cancer 4:755–768

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell cycle checkpoints and cancer. Nature 432:316–323

    Article  CAS  PubMed  Google Scholar 

  • Kelley MR, Fishel ML (2008) DNA repair proteins as molecular targets for cancer therapeutics. Anti Cancer Agents Med Chem 8:417–425

    Article  CAS  Google Scholar 

  • Kelley MR, Parsons SH (2001) Redox regulation of the DNA repair function of the human AP endonuclease Ape1/ref-1. Antioxid Redox Signal 3:671–683

    Article  CAS  PubMed  Google Scholar 

  • Kelley MR, Logsdon D, Fishel M (2014) Targeting DNA repair pathways for cancer treatment: what’s new? Future Oncol 10:1215–1237

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Tania M, Zhang DZ, Chen HC (2010) Antioxidant enzymes and cancer. Clin J Cancer Res 22:87–92

    CAS  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  CAS  PubMed  Google Scholar 

  • Khodyreva SN, Prasad R, Ilina ES, Sukhanova MV, Kutuzov MM, Liu Y et al (2010) Apurinic/apyrimidinic (AP) site recognition by the 5′-dRP/AP lyase in poly (ADP-ribose) polymerase-1 (PARP-1). Proc Natl Acad Sci U S A 107:22090–22095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Wilson DM 3rd (2012) Overview of base excision repair biochemistry. Curr Mol Pharmacol 5:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Son SJ, Kim EK, Kim SN, Yoo DG, Kim HS et al (2006) Apurinic/apyrimidinic endonuclease1/redox factor-1 inhibits monocyte adhesion in endothelial cells. Cardiovasc Res 69:520–526

    Article  CAS  PubMed  Google Scholar 

  • King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5:773–785

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  • Kuhne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Lobrich M (2004) A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 64:500–508

    Article  PubMed  Google Scholar 

  • Lam MH, Liu Q, Elledge SJ, Rosen JM (2004) Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6:45–59

    Article  CAS  PubMed  Google Scholar 

  • Lambert S, Carr AM (2005) Checkpoint responses to replication fork barriers. Biochimie 87:591–602

    Article  CAS  PubMed  Google Scholar 

  • Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW (2006) Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9:13–22

    Article  CAS  PubMed  Google Scholar 

  • Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N et al (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336:225–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DH, Liu Y, Lee HW, Xia B, Brice AR, Park SH, Balduf H, Dominy BN, Cao W (2015) A structural determinant in the uracil DNA glycosylase superfamily for the removal of uracil from adenine/uracil base pairs. Nucleic Acids Res 43:1081–1089

    Article  CAS  PubMed  Google Scholar 

  • LeMaire-Adkins R, Radke K, Hunt PA (1997) Lack of checkpoient control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol 139:1611–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemons JM, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, Raitman I, Pollina EA, Rabitz HA, Rabinowitz JD, Coller HA (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8:e1000514

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Wilson DM 3rd (2014) Human apurinic/apyrimidinic endonuclease 1. Antioxid Redox Signal 20:678–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Zhu Y, Tang Q, Lu H, Li H, Yang Y et al (2009) A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress. Cancer Biother Radiopharm 24:81–90

    CAS  PubMed  Google Scholar 

  • Li M, Zhong Z, Zhu J, Xiang D, Dai N, Cao X et al (2010) Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1. J Biol Chem 285:14871–14881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MX, Shan JL, Wang D, He Y, Zhou Q, Xia L et al (2012) Human apurinic/apyrimidinic endonuclease 1 translocalizes to mitochondria after photodynamic therapy and protects cells from apoptosis. Cancer Sci 103:882–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaudat AC, Bohl LP, de Talamoni NGT, Maletto B, Pistoresi-Palencia MC, Picotto G (2014) Oxidative stress, cell cycle arrest and differentiation contribute toward the antiproliferative action of BSO and calcitriol on Caco-2 cells. Anti-Cancer Drugs 25:810–818

    Article  CAS  PubMed  Google Scholar 

  • Lieber MR (2010) NHEJ and its backup pathways in chromosomal translocations. Nat Struct Mol Biol 17:393–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CH, Chen PM, Cheng YW, Chen CY, Yuan CJ, Lee H (2012) The APE1 asp/asp genotype and the combination of APE1 asp/asp and hOGG1-Cys variants are associated with increased p53 mutation in non–small cell lung cancer. J Epidemiol 22:537–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Lingappan K (2018) NF-kB in oxidative stress. Curr Opin Toxicol 7:81–86

    Article  PubMed  Google Scholar 

  • Liu RH, Hotchkiss JH (1995) Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 339:73–89

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Wikonkal NM, Brash DE (1999) Induction of cyclin-dependent kinase inhibitors and G(1) prolongation by the chemopreventive agent N-acetylcysteine. Carcinogenesis 20:1869–1872

    Article  CAS  PubMed  Google Scholar 

  • Lo YL, Jou YS, Hsiao CF, Chang GC, Tsai YH, Su WC et al (2009) A polymorphism in the APE1 gene promoter is associated with lung cancer risk. Cancer Epidemiol Biomark Prev 18:223–229

    Article  CAS  Google Scholar 

  • Loboda A, Stachurska A, Dorosz J, Zurawski M, Wegrzyn J, Kozakowska M, Jozkowicz A, Dulak J (2009) HIF-1 attenuates Ref-1 expression in endothelial cells: reversal by siRNA and inhibition of geranylgeranylation. Vasc Pharmacol 51:133–139

    Article  CAS  Google Scholar 

  • Lopez de Saro FJ, Marinus MG, Modrich P, O’Donnell M (2006) The beta sliding clamp binds to multiple sites within MutL and MutS. J Biol Chem 281:14340–14349

    Article  PubMed  Google Scholar 

  • Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  CAS  PubMed  Google Scholar 

  • Luo M, He H, Kelley MR, Georgiadis MM (2010) Redox regulation of DNA repair: implications for human health and cancer therapeutic development. Antioxid Redox Signal 12:1247–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Zhang J, He H, Su D, Chen Q, Gross ML et al (2012) Characterization of the redox activity and disulfide bond formation in apurinic/apyrimidinic endonuclease. Biochemistry 51:695–705

    Article  CAS  PubMed  Google Scholar 

  • Maestre C, Delgado-Esteban M, Gomez-Sanchez JC, Bolanos JP, Almeida A (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27:2736–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M (2011) Physiological relevance of cell cycle kinases. Physiol Rev 91:973–1007

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1:222–231

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17:60–65

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G et al (2009) Cyclin-dependent kinases: a family portrait. Nat Cell Biol 11:1275–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal S, Freije WA, Guptan P, Banerjee U (2010) Metabolic control of G1-S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J Cell Biol 188:473–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantha AK, Sarkar B, Tell G (2013) A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 16:38–49

    Article  PubMed  Google Scholar 

  • Martin A, Odajima J, Hunt SL, Dubus P, Ortega S, Malumbres M et al (2005) Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 7:591–598

    Article  CAS  PubMed  Google Scholar 

  • Martinez MC, Post JA, Verkleij AJ, Verrips CT, Boonstra J (2001) The effect of hydrogen peroxide on the cyclin D expression in fibroblasts. Cell Mol Life Sci 58:990–996

    Article  Google Scholar 

  • Massague J (2004) G1 cell-cycle control and cancer. Nature 432:298–306

    Article  CAS  PubMed  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushima S, Kuroda J, Ago T, Zhai P, Park JY et al (2013) Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res 112:651–663

    Article  CAS  PubMed  Google Scholar 

  • Matthews JR, Kaszubska W, Turcatti G, Wells TN, Hai RT (1993) Role of cysteine62 in DNA recognition by the p50 subunit of NF-kappa B. Nucleic Acids Res 21:1727–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2–10

    Article  CAS  PubMed  Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787

    Article  CAS  PubMed  Google Scholar 

  • Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P (2005) A structural perspective of CTD function. Genes Dev 19:1401–1415

    Article  CAS  PubMed  Google Scholar 

  • Melo S, Villanueva A, Moutinho C, Davalos V, Spizzo R et al (2011) Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci U S A 108:4394–4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon SG, Sarsour EH, Kalen AL, Venkataraman S, Hitchler MJ, Domann FE, Oberley LW, Goswami PC (2007) Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase. Cancer Res 67:6392–6399

    Article  CAS  PubMed  Google Scholar 

  • Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C et al (1992) A family of human cdc2-related protein kinases. EMBO J 11:2909–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelini F, Pitchiaya S, Vitelli V, Sharma S, Gioia U et al (2017) Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol 19:1400–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikhed Y, Gorlach A, Knaus UG, Daiber A (2015) Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 5:275–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J (2009) A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci U S A 106:11960–11965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molenaar JJ, Ebus ME, Koster J, van Sluis P, van Noesel CJ, Versteeg R et al (2008) Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma. Cancer Res 68:2599–2609

    Article  CAS  PubMed  Google Scholar 

  • Montalto AS, Curro M, Russo T, Visalli G, Impellizzeri P, Antonuccio P, Arena S, Borruto FA, Scaffari G, Ientile R, Romeo C (2013) In vitro CO2-induced ROS production impaires cell cycle in SH-SY5Y neuroblastoma cells. Pediatr Surg Int 29:51–59

    Article  PubMed  Google Scholar 

  • Montariello D, Troiano A, Di Girolamo D, Beneke S, Calabrò V, Quesada P (2015) Effect of poly(ADP-ribose) polymerase and DNA topoisomerase I inhibitors on the p53/p63-dependent survival of carcinoma cells. Biochem Pharmacol 94:212–219

    Article  CAS  PubMed  Google Scholar 

  • Moreira JDV, Peres S, Steyaert JM, Bigan E, Pauleve L, Nogueira ML, Schwartz L (2015) Cell cycle progression is regulated by interwined redox oscillators. Theor Biol Med Model 12:10. 14 pages

    Article  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  CAS  PubMed  Google Scholar 

  • Motegi A, Masutani M, Yoshioka KI, Bessho T (2019) Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin Cancer Biol 58:29–46

    Article  CAS  PubMed  Google Scholar 

  • Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muro Y, Sugiura K, Mimori T, Akiyama M (2015) DNA mismatch repair enzymes: genetic defects and autoimmunity. Clin Chim Acta 442:102–109

    Article  CAS  PubMed  Google Scholar 

  • Narayanan S, Janakiraman B, Kumar L, Radhakrishnan SK (2015) A cell cycle-controlled redox switch regulates the topoisomerase IV activity. Genes Dev 29:1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DM, Ye X, Hall C, Santos H, Ma T, Kao GD, Yen TJ, Harper JW, Adams PD (2002) Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol Cell Biol 22:7459–7472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson RI, Gee JMW, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37:9–15

    Article  Google Scholar 

  • Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100:71–78

    Article  CAS  PubMed  Google Scholar 

  • O’Connor MJ (2015) Targeting the DNA damage response in cancer. Mol Cell 60:547–560

    Article  PubMed  Google Scholar 

  • Odom RY, Dansby MY, Rollins-Hairston AM, Jackson KM, Kirlin WG (2009) Phytochemical induction of cell cycle arrest by glutathione oxidation and reversal by N-acetylcysteine in human colon carcinoma cells. Nutr Cancer 61:332–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto T, Kohno M, Ito K, Takada K, Katsura M et al (2017) Clinical significance of DNA damage response factors and chromosomal instability in primary lung adenocarcinoma. Anticancer Res 37:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL, Fan J, Danzy S, Wilson DM 3rd, Bohr VA (2005) Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 33:1230–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JE, Iversen ES, Hartemink AJ, Haase SB (2008) Globel control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453:944–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki M, Suzuki S, Irani K (2002) Redox factor-1/APE suppresses oxidative stress by inhibiting the rac1 GTPase. FASEB J 16:889–890

    Article  CAS  PubMed  Google Scholar 

  • Palancade B, Bensaude O (2003) Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem 270:3859–3870

    Article  CAS  PubMed  Google Scholar 

  • Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 71:1286–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MS, Kim CS, Joo HK, Lee YR, Kang G, Kim SJ et al (2013) Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells. Mol Cells 36:439–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JS, Kim HL, Kim YJ, Weon JI, Sung MK, Chung HW, Seo YR (2014) Human AP endonuclease 1: a potential marker for the prediction of environmental carcinogenesis risk. Oxidative Med Cell Longev 2014:730301. 15 pages

    Article  Google Scholar 

  • Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7:644–656

    Article  CAS  PubMed  Google Scholar 

  • Pilie PG, Tang C, Mills GB, Yap TA (2019) State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 16:81–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prelich G (2002) DNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryot Cell 1:153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Zhang Y, Baller JA, Voytas DF (2016) Histone H2AX and the small RNA pathway modulate both non-homologous end-joining and homologous recombination in plants. Mutat Res 783:9–14

    Article  CAS  PubMed  Google Scholar 

  • Raffoul JJ, Banerjee S, Singh-Gupta V, Knoll Z, Fite A, Zhang H et al (2007) Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res 67:2141–2149

    Article  CAS  PubMed  Google Scholar 

  • Raffoul JJ, Heydari AR, Hillman GG (2012) DNA repair and cancer therapy: targeting APE1/Ref-1 using dietary agents. J Oncol 2012:370481. 11 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray D, Terao Y, Fuhrken PG, Ma ZQ, DeMayo FJ, Christov K et al (2007) Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability. Cancer Res 67:984–991

    Article  CAS  PubMed  Google Scholar 

  • Ray D, Terao Y, Christov K, Kaldis P, Kiyokawa H (2011) Cdk2-null mice are resistant to Erb-2-induced mammary tumorigenesis. Neoplasia 13:439–444

    Google Scholar 

  • Robbins SL, Cotran RS (2004) In: Kumar V, Abbas AK, Fausto N (eds) Pathological basis of disease. Elsvier. ISBN 81-8143-528-3

    Google Scholar 

  • Romeo Y, Zhang X, Roux PP (2012) Regulation and function of the RSK family of protein kinases. Biochem J 441:553–569

    Article  CAS  PubMed  Google Scholar 

  • Rowe BP, Glazer PM (2010) Emergence of rationally designed therapeutic strategies for breast cancer targeting DNA repair mechanisms. Breast Cancer Res 12:203. 11 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M, Jiao X, Li A, Zhang X, Lu Y et al (2006) Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol 26:5449–5469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K et al (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448:811–815

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana AP, Kaldis P (2009) Mammalian cell-cycle regulation: several CDKs, numerous cyclins and diverse compensatory mechanisms. Oncogene 28:2925–2939

    Article  CAS  PubMed  Google Scholar 

  • Sausville EA (2002) Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol Med 8:S32–S37

    Article  CAS  PubMed  Google Scholar 

  • Savitsky PA, Finkel T (2002) Redox regulation of Cdc25C. J Biol Chem 277:20535–20540

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22:7842–7852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian B, Kakizuka A, Hunter T (1993) Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc Natl Acad Sci U S A 90:3521–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan G, Li Y, Zhang J, Li W, Szulwach KE et al (2008) A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol 26:933–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24:1770–1783

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Collins LB, Clement JM, Zhang Z, Nakamura J, Swenberg JA (2014) Molecular dosimetry of endogenous and exogenous O(6)-methyl-dG and N7-methyl-G adducts following low dose [D3]-methylnitrosourea exposures in cultured human cells. Chem Res Toxicol 27:480–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE (1997) Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 11:1464–1478

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1999) Positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18:2699–2711

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y, Kastan MB (2001) ATM genome stability, neuronal development and cancer cross paths. Adv Cancer Res 83:209–254

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more nature reviews. Mol Cell Biol 14:197–210

    CAS  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Saxena R, Srinivas G, Pande G, Chattopadhyay A (2013) Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS One 8:e58833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slupphaug G, Kavli B, Krokan HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, Martin L (1973) Do cell cycle? Proc Natl Acad Sci U S A 70:1263–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YJ, Lee JY, Joo HK, Kim HS, Lee SK, Lee KH et al (2008) Tat-APE1/ref-1 protein inhibits TNF-alpha-induced endothelial cell activation. Biochem Biophys Res Commun 368:68–73

    Article  CAS  PubMed  Google Scholar 

  • Sousa E, Graca I, Baptista T, Vieira FQ, Palmeira C et al (2013) Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing. Epigenetics 8:548–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracker TH, Petrini JH (2011) The MRE11 complex: starting from the ends nature reviews. Mol Cell Biol 12:90–103

    CAS  Google Scholar 

  • Su D, Delaplane S, Luo M, Rempel DL, Vu B, Kelley MR et al (2011) Interactions of apurinic/apyrimidinic endonuclease with a redox inhibitor: evidence for an alternate conformation of the enzyme. Biochemistry 50:82–92

    Article  CAS  PubMed  Google Scholar 

  • Svegliati S, Marrone G, Pezone A, Spadoni T, Grieco A, Moroncini G, Grieco D, Vinciguerra M, Agnese S, Jungel A, Distler O, Musti AM, Gabrielli A, Avvedimento EV (2014) Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci Signal 7:ra84

    Article  PubMed  Google Scholar 

  • Swahari V, Nakamura A, Baran-Gale J, Garcia I, Crowther AJ et al (2016) Essential function of Dicer in resolving DNA damage in the rapidly dividing cells of the developing and malignant. Cerebellum Cell Rep 14:216–224

    Article  CAS  PubMed  Google Scholar 

  • Tchakarska G, Roussel M, Troussard X, Sola B (2011) Cyclin D1 inhibits mitochondrial activity in B cells. Cancer Res 71:1690–1699

    Article  CAS  PubMed  Google Scholar 

  • Tell G, Zecca A, Pellizzari L, Spessotto P, Colombatti A, Kelley MR, Damante G, Pucillo C (2000) An “environment to nucleus” signaling system operates in B lymphocytes: redox status modulates BSAP/Pax-5 activation through Ref-1 nuclear translocation. Nucleic Acids Res 28:1099–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tell G, Crivellato E, Pines A, Paron I, Pucillo C, Manzini G et al (2001) Mitochondrial localization of APE/Ref-1 in thyroid cells. Mutat Res 485:143–152

    Article  CAS  PubMed  Google Scholar 

  • Tell G, Damante G, Caldwell D, Kelley MR (2005) The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 7:367–384

    Article  CAS  PubMed  Google Scholar 

  • Tell G, Quadrifoglio F, Tiribelli C, Kelley MR (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11:601–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetsu O, McCormick F (2003) Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3:233–245

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK (2014) APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 46:e106. 21 pages

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledano MB, Leonard WJ (1991) Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci U S A 88:4328–4332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo LI, Altmeyer M, Rask MB, Lukas CL, Larsen DH et al (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155:1088–1103

    Article  CAS  PubMed  Google Scholar 

  • Tomaszowski KH, Aasland D, Margison GP, Williams E, Pinder SI, Modesti M, Fuchs RP, Kaina B (2015) The bacterial alkyltransferase-like (eATL) protein protects mammalian cells against methylating agent-induced toxicity. DNA Repair (Amst) 28:14–20

    Article  CAS  PubMed  Google Scholar 

  • Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–1158

    Article  CAS  PubMed  Google Scholar 

  • Tubbs A, Nussenzweig A (2017) Endogenous DNA damage as a source of genomic instability in cancer. Cell 168:644–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tudek B, Winczura A, Janik T, Sjomek A, Foksinski M, Olinski R (2010) Involvement of oxidatively damage DNA and repair in cancer development and aging. Am J Transl Res 15:254–284

    Google Scholar 

  • Tudzarova S, Colombo SL, Stoeber K, Carcamo S, Williams GH, Moncada S (2011) Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle. Proc Natl Acad Sci U S A 108:5278–5283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk PW, Laayoun A, Smith SS, Weitzman SA (1995) DNA adduct 8-hyroxyl-2′-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis 16:1253–1255

    Article  CAS  PubMed  Google Scholar 

  • Turowski PC, Franckhauser MC, Morris P, Vaglio A, Fernandez N, Lamb JC (2003) Functional Cdc25C dual-specificity phosphatase is required for S-phase entry in human cells. Mol Biol Cell 14:2984–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864

    Article  CAS  PubMed  Google Scholar 

  • Ushijima T (2005) Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 5:223–231

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182

    Article  CAS  PubMed  Google Scholar 

  • Verbon EH, Post JA, Boonstra J (2012) The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 511:1–6

    Article  CAS  PubMed  Google Scholar 

  • Viallard JF, Lacombe F, Belloc F, Pellegrin JL, Reiffers J (2001) Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology. Cancer Radiother 5:109–129

    Article  CAS  PubMed  Google Scholar 

  • Vidal AE, Boiteux S, Hickson ID, Radicella JP (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein–protein interactions. EMBO J 20:6530–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakumar S, Liu G, Rus IA, Yao S, Chen Y et al (2011) High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell 19:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vodermaier HC (2004) APC/C and SCF: controlling each other and the cell cycle. Curr Biol 14:R787–R796

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  • Walker LJ, Robson CN, Black E, Gillespie D, Hickson ID (1993) Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol Cell Biol 13:5370–5376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J, Fu M, Leader JE, Quong A, Novikoff PM, Pestell RG (2006) Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci U S A 103:11567–11572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YT, Tzeng DW, Wang CY, Hong JY, Yang JL (2013) APE1/Ref1 prevents oxidative inactivation of ERK for G1-to-S progression following lead acetate exposure. Toxicology 305:120–129

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Yang Z, Tang CH, Liu L (2011) Targeted deletion of GSNOR in hepatocytes of mice causes nitrosative inactivation of O6-alkylguanine-DNA alkyltransferase and increased sensitivity to genotoxic diethylnitrosamine. Carcinogenesis 32:973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Ba Z, Gao M, Wu Y, Ma Y et al (2012) A role for small RNAs in DNA double-strand break repair. Cell 149:101–112

    Article  CAS  PubMed  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  CAS  PubMed  Google Scholar 

  • White MA, Rites L, Cohen BA (2009) A systematic screen for transcriptional regulators of the yeast cell cycle. Genetics 181:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood RD, Mitchell M, Lindahl T (2005) Human DNA repair genes. Mutat Res 577:275–283

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Yee A, Liu L, Carbonaro-Hall D, Venkatesan N et al (1994) Molecular cloning of the human CAK1 gene encoding a cyclin-dependent kinase-activating kinase. Oncogene 9:2089–2096

    CAS  PubMed  Google Scholar 

  • Xanthoudakis S, Miao GG, Curran T (1994) The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains. Proc Natl Acad Sci U S A 91:23–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yacoub A, Kelley MR, Deutsch WA (1997) The DNA repair activity of human redox/repair protein APE/Ref-1 is inactivated by phosphorylation. Cancer Res 57:5457–5459

    CAS  PubMed  Google Scholar 

  • Yamaura M, Mitsushita J, Furuta S, Kiniwa Y, Ashida A et al (2009) NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Cancer Res 69:2647–2654

    Article  CAS  PubMed  Google Scholar 

  • Yamawaki H, Berk BC (2005) Thioredoxin: a multifunctional antioxidant enzyme in kidney, heart and vessels. Curr Opin Nephrol Hypertens 14:149–153

    Article  CAS  PubMed  Google Scholar 

  • Yan YB (2016) Creatine kinase in cell cycle regulation and cancer. Amino Acids 48:1775–1784

    Article  CAS  PubMed  Google Scholar 

  • Yoo DG, Song YJ, Cho EJ, Lee SK, Park JB, Yu JH et al (2008) Alteration of APE1/ref-1 expression in non-small cell lung cancer: the implications of impaired extracellular superoxide dismutase and catalase antioxidant systems. Lung Cancer 60:277–284

    Article  PubMed  Google Scholar 

  • Yousef MI, Hussien HM (2015) Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: protective effect of ginseng. Food Chem Toxicol 78:17–25

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Geng Y, Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y et al (2006) Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9:23–32

    Article  CAS  PubMed  Google Scholar 

  • Zaky A, Busso C, Izumi T, Chattopadhyay R, Bassiouny A, Mitra S et al (2008) Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res 36:1555–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zannini L, Delia D, Buscemi G (2014) CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol 6:442–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanuy M, Ramos-Montoya A, Villacanas O, Canela N, Miranda A, Aguilar E et al (2012) Cyclin-dependent kinases 4 and 6 control tumor progression and direct glucose oxidation in the pentose cycle. Metabolomics 8:454–464

    Article  CAS  PubMed  Google Scholar 

  • Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Cicero SA, Wang L, Romito-Digiacomo RR, Yang Y, Herru K (2008) Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc Natl Acad Sci U S A 105:8772–8777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou GM, Karikari C, Kabe Y, Handa H, Anders RA, Maitra A (2009) The Ape-1/Ref-1 redox antagonist E3330 inhibits the growth of tumor endothelium and endothelial progenitor cells: therapeutic implications in tumor angiogenesis. J Cell Physiol 219:209–218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, M.P. (2023). Cell Cycle, DNA Damage Repair Systems, and Impact of Redox Regulation in Cancer. In: Redox Regulation and Therapeutic Approaches in Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-99-7342-2_8

Download citation

Publish with us

Policies and ethics