Skip to main content

Silicon-Based Nanocomposites as Photoluminescent Materials: A Perspective and Advantages of the Radiation-Assisted Synthetic Approach

  • Chapter
  • First Online:
Handbook of Materials Science, Volume 1

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 545 Accesses

Abstract

Silicon (Si), an indirect band gap semiconductor, was frequently overlooked as a photoluminescent material. However, with the discovery of photoluminescence from porous Si in the 1990s, the scientific community realized the relevance of quantum confinement in the observed phenomena. Consequently, interest in the fabrication of Si-based nanomaterials or nanocomposites has grown exponentially over the past two decades. This interest was further fueled by the advantageous properties of Si, such as, economical, low toxicity, and wide abundance in nature. Due to these alluring characteristics, Si-based nanomaterials have been and continue to be intensively studied for numerous applications, including catalysis, optoelectronics, energy, and biology. Of course, various strategies have been devised to synthesize Si-based nanomaterials with controlled morphologies, tunable photoluminescence, and enhanced quantum yields. However, considering the imminent applications of nanomaterials based on Si, it is pertinent to design or further improve existing synthetic protocols by incorporating various features, such as, being eco-friendly, cost-effective, and time-efficient. The ionizing radiation-assisted approach described in this perspective could play a key role, as it inherits these advantages. Some of the exemplary works in this chapter have been summarized to highlight recent developments in the synthesis of Si-based nanomaterials by the most prominent methods as well as their pros and cons. Following this, findings regarding the use of ionizing radiation in the synthesis of Si-based nanomaterials will be presented. In addition, their formation mechanism, the effect of various biocompatible ligands on photoluminescence properties, and possible applications in forensics and biomedicine will also be discussed. Finally, some of the major challenges that must be addressed in view of the imminent commercial use of Si-based nanomaterials are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahoulou, S., Perret, E., Nedelec, J.M.: Nanomaterials 11, 999 (2021)

    Article  CAS  Google Scholar 

  • Canham, L.T.: Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  CAS  Google Scholar 

  • Canham, L.: Faraday Discuss. 222, 10–81 (2020)

    Article  CAS  Google Scholar 

  • Chandra, S., Beaune, G., Shirahata, N., Winnik, F.M.: J. Mater. Chem. B 5, 1363–1370 (2017)

    Article  CAS  Google Scholar 

  • Cheng, X., Lowe, S.B., Reece, P.J., Gooding, J.J.: Chem. Soc. Rev. 43, 2680–2700 (2014)

    Article  CAS  Google Scholar 

  • Chu, B., Wang, H., Song, B., Peng, F., Su, Y., He, Y.: Anal. Chem. 88, 9235–9242 (2016)

    Article  CAS  Google Scholar 

  • Croissant, J.G., Fatieiev, Y., Khashab, N.M.: Adv. Mater. 29, 1604634 (2017)

    Article  Google Scholar 

  • Dasog, M., Veinot, J.G.C.: Chem. Commun. 48, 3760–3762 (2012)

    Article  CAS  Google Scholar 

  • Dasog, M., Reyes, G.B.D., Titova, L.V., Hegmann, F.A., Veinot, J.G.C.: ACS Nano 8, 9636–9648 (2014)

    Article  CAS  Google Scholar 

  • Dohnalová, K., Gregorkiewicz, T., Kůsová, K.: J. Phys. Condens. Matter 26, 173201 (2014)

    Article  Google Scholar 

  • Ghosh, B., Shirahata, N.: Sci. Technol. Adv. Mater. 15, 014207 (2014)

    Article  CAS  Google Scholar 

  • Guleria, A., Neogy, S., Maurya, D.K., Adhikari, S.: J. Phys. Chem. C 121, 24302–24316 (2017)

    Article  CAS  Google Scholar 

  • Guleria, A., Chavan, A.P., Neogy, S., Gandhi, V.V., Kunwar, A., Debnath, A.K., Adhikari, S.: ACS Appl. Nano Mater. 3, 5123–5138 (2020)

    Article  CAS  Google Scholar 

  • Guleria, A., Tomy, A., Baby, C.M., Gandhi, V.V., Kunwar, A., Debnath, A.K., Adhikari, S.: J. Mol. Liq. 334, 116072 (2021a)

    Article  CAS  Google Scholar 

  • Guleria, A., Chavan, A.P., Tomy, A., Baby, C.M., Neogy, S., Debnath, A.K., Adhikari, S.: Ceram. Int. 47, 2649–2655 (2021b)

    Article  CAS  Google Scholar 

  • Guleria, A., Gandhi, V.V., Kunwar, A., Neogy, S., Debnath, A.K., Adhikari, S.: Colloids Surf. A Physicochem. Eng. 640, 128483 (2022)

    Article  CAS  Google Scholar 

  • Gupta, A., Wiggers, H.: Nanotechnology 22, 055707 (2011)

    Article  Google Scholar 

  • Gupta, A., Swihart, M.T., Wiggers, H.: Adv. Funct. Mater. 19, 696–703 (2009)

    Article  CAS  Google Scholar 

  • He, Y., Su, Y., Yang, X., Kang, Z., Xu, T., Zhang, R., Fan, C., Lee, S.T.: J. Am. Chem. Soc. 131, 4434–4438 (2009)

    Article  CAS  Google Scholar 

  • Hessel, C.M., Henderson, E.J., Veinot, J.G.C.: Chem. Mater. 18, 6139–6146 (2006)

    Article  CAS  Google Scholar 

  • Hessel, C.M., Reid, D., Panthani, M.G., Rasch, M.R., Goodfellow, B.W., Wei, J., Fujii, H., Akhavan, V., Korgel, B.A.: Chem. Mater. 24, 393–401 (2012)

    Article  CAS  Google Scholar 

  • Kang, Z., Tsang, C.H.A., Zhang, Z., Zhang, M., Wong, N.B., Zapien, J.A., Shan, Y., Lee, S.T.: J. Am. Chem. Soc. 129, 5326–5327 (2007)

    Article  CAS  Google Scholar 

  • Kang, Z., Liu, Y., Tsang, C.H.A., Ma, D.D.D., Fan, X., Wong, N.B., Lee, S.T.: Adv. Mater. 21, 661–664 (2009)

    Article  CAS  Google Scholar 

  • Li, Q., Jin, R.: Nanotechnol. Rev. 6, 601–612 (2017)

    Article  Google Scholar 

  • Li, Q., Luo, T.Y., Zhou, M., Abroshan, H., Huang, J., Kim, H.J., Rosi, N.L., Shao, Z., Jin, R.: ACS Nano 10, 8385–8393 (2016)

    Article  CAS  Google Scholar 

  • Liang, J., Huang, C., Gong, X.: ACS Sustain. Chem. Eng. 7, 18213–18227 (2019)

    Article  CAS  Google Scholar 

  • Liang, J., Wu, Y., Gong, X., Vomiero, A.: J. Mater. Chem. C 9, 1746–1754 (2021)

    Article  CAS  Google Scholar 

  • Maier-Flaig, F., Rinck, J., Stephan, M., Bocksrocker, T., Bruns, M., Kübel, C., Powell, A.K., Ozin, G.A., Lemmer, U.: Nano Lett. 13, 475–480 (2013)

    Article  CAS  Google Scholar 

  • Mastronardi, M.L., Henderson, E.J., Puzzo, D.P., Ozin, G.A.: Adv. Mater. 24, 5890–5898 (2012a)

    Article  CAS  Google Scholar 

  • Mastronardi, M.L., Maier-Flaig, F., Faulkner, D., Henderson, E.J., Kübel, C., Lemmer, U., Ozin, G.A.: Nano Lett. 12, 337–342 (2012b)

    Article  CAS  Google Scholar 

  • Morozova, S., Alikina, M., Vinogradov, A., Pagliaro, M.: Front. Chem. 8, 191 (2020)

    Article  CAS  Google Scholar 

  • Nishimura, H., Ritchie, K., Kasai, R.S., Goto, M., Morone, N., Sugimura, H., Tanaka, K., Sase, I., Yoshimura, A., Nakano, Y., Fujiwara, T.K., Kusumi, A.: J. Cell Biol. 202, 967–983 (2013)

    Article  CAS  Google Scholar 

  • Park, J.H., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S.N., Sailor, M.J.: Nat. Mater. 8, 331–336 (2009)

    Article  CAS  Google Scholar 

  • Pucker, G., Serra, E., Jestin, Y.: Silicon quantum dots for photovoltaics: a review. In: Al-Ahmadi, A. (ed.) Quantum Dots—A Variety of New Applications, chap. 4, pp. 59–92. IntechOpen, London (2012)

    Google Scholar 

  • Sgrignuoli, F., Paternoster, G., Marconi, A., Ingenhoven, P., Anopchenko, A., Pucker, G., Pavesi, L.: J. Appl. Phys. 111, 034303 (2012)

    Article  Google Scholar 

  • Shirahata, N.: Phys. Chem. Chem. Phys. 13, 7284–7294 (2011)

    Article  CAS  Google Scholar 

  • Song, B., He, Y.: Nano Today 26, 149–163 (2019)

    Article  CAS  Google Scholar 

  • Song, B., Zhong, Y., Wu, S., Chu, B., Su, Y., He, Y.: J. Am. Chem. Soc. 138, 4824–4831 (2016)

    Article  CAS  Google Scholar 

  • Teo, B.K., Sun, X.H.: Chem. Rev. 107, 1454–1532 (2007)

    Article  CAS  Google Scholar 

  • Tiwari, A., Sherpa, Y.L., Pathak, A.P., Singh, L.S., Gupta, A., Tripathi, A.: Mater. Today Commun. 19, 62–67 (2019)

    Article  CAS  Google Scholar 

  • Wang, D.C., Zhang, C., Zeng, P., Zhou, W.J., Ma, L., Wang, H.T., Zhou, Z.Q., Hu, F., Zhang, S.Y., Lu, M., Wu, X.: Sci. Bull. 63, 75–77 (2018)

    Article  CAS  Google Scholar 

  • Wang, J., Jiang, A., Wang, J., Song, B., He, Y.: Faraday Discuss. 222, 122 (2020)

    Article  CAS  Google Scholar 

  • Warner, J.H., Hoshino, A., Yamamoto, K., Tilley, R.D.: Angew. Chem. 117, 4626–4630 (2005)

    Article  Google Scholar 

  • Werwa, E., Seraphin, A.A., Chiu, L.A., Zhou, C., Kolenbrander, K.D.: Appl. Phys. Lett. 64, 1821 (1994)

    Article  CAS  Google Scholar 

  • Wu, S., Zhong, Y., Zhou, Y., Song, B., Chu, B., Ji, X., Wu, Y., Su, Y., He, Y.: J. Am. Chem. Soc. 137, 14726–14732 (2015)

    Article  CAS  Google Scholar 

  • Xie, J., Jiang, X., Zhong, Y., Lu, Y., Wang, S., Wei, X., Su, Y., He, Y.: Nanoscale 6, 9215 (2014)

    Article  CAS  Google Scholar 

  • Yang, W., Sun, M., Song, H., Su, Y., Lv, Y.: J. Mater. Chem. C 8, 16949–16956 (2020)

    Article  CAS  Google Scholar 

  • Yu, D.P., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Fu, J.S., Zhang, H.Z., Ding, Y., Xiong, G.C., You, L.P., Xu, J., Feng, S.Q.: Phys. Rev. B: Condens. Matter Mater. Phys. 59, 2498–2501 (1999)

    Article  Google Scholar 

  • Zhao, G., Zhu, Y., Guang, S., Ke, F., Xu, H.: New J. Chem. 42, 555–563 (2018)

    Article  CAS  Google Scholar 

  • Zhong, Y., Peng, F., Bao, F., Wang, S., Ji, X., Yang, L., Su, Y., Lee, S.T., He, Y.: J. Am. Chem. Soc. 135, 8350–8356 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the members of the RPCD LINAC facility for their help in the pulse radiolysis and irradiation-based experiments. The authors thank Dr. Awadhesh Kumar, Head, RPCD, and Dr. A. K. Tyagi, Director, Chemistry Group, BARC for their support and encouragement.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Apurav Guleria or Soumyakanti Adhikari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guleria, A., Adhikari, S. (2024). Silicon-Based Nanocomposites as Photoluminescent Materials: A Perspective and Advantages of the Radiation-Assisted Synthetic Approach. In: Ningthoujam, R.S., Tyagi, A.K. (eds) Handbook of Materials Science, Volume 1. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-7145-9_17

Download citation

Publish with us

Policies and ethics