Skip to main content

Computational Fluid Dynamics in the Human Integumentary Systems

  • Chapter
  • First Online:
Computational Fluid Dynamics Applications in Bio and Biomedical Processes

Abstract

The human skin can be simulated using computational fluid dynamics (CFD) to provide detailed information that cannot be obtained from experimentation. Understanding the geometric complexity of the skin anatomy, grid generation, and boundary conditions are all part of the CFD study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Casale, C., Imparato, G., Urciuolo, F., & Netti, P. A. (2016). Endogenous human skin equivalent promotes in vitro morphogenesis of follicle-like structures. Biomaterials, 101, 86–95.

    Article  Google Scholar 

  • Cavicchi, A., Gambarotta, L., & Massabò, R. (2009). Computational modelling of reconstructive surgery: The effects of the natural tension on skin wrinkling. Finite Elements in Analysis and Design, 45(8–9), 519–529.

    Article  Google Scholar 

  • Chanda, A., & Unnikrishnan, V. (2017). A realistic 3D computational model of the closure of skin wound with interrupted sutures. Journal of Mechanics in Medicine and Biology, 17(01), 1750025.

    Article  Google Scholar 

  • Flynn, C. (2010). Finite element models of wound closure. Journal of Tissue Viability, 19(4), 137–149.

    Article  Google Scholar 

  • Gupta, S., Patel, L., Mitra, K., & Bit, A. (2022). Fibroblast derived skin wound healing modelling on chip under the influence of micro-capillary shear stress. Micromachines, 13(2), 305.

    Article  Google Scholar 

  • Henrot, P., Laurent, P., Levionnois, E., Leleu, D., Pain, C., Truchetet, M. E., & Cario, M. (2020). A method for isolating and culturing skin cells: Application to endothelial cells, fibroblasts, keratinocytes, and melanocytes from punch biopsies in systemic sclerosis skin. Frontiers in Immunology, 11, 566607.

    Article  Google Scholar 

  • Holmes, M., Dufour, D., Kahan, M., Traynor, K., & Billiar, K. (2005, April). A method for applying strip biaxial stretch to cultured tissues. In Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, 2005. (pp. 168–169). IEEE. Journal of Heat Transfer, 137(12).

    Google Scholar 

  • Karavasili, C., Tsongas, K., Andreadis, I. I., Andriotis, E. G., Papachristou, E. T., Papi, R. M., Tzetzis, D., & Fatouros, D. G. (2020). Physico-mechanical and finite element analysis evaluation of 3D printable alginate-methylcellulose inks for wound healing applications. Carbohydrate polymers, 247, 116666.

    Google Scholar 

  • Makvandi, P., Shabani, M., Rabiee, N., Anjani, Q. K., Maleki, A., Zare, E. N., Sabri, A. H. B., De Pasquale, D., Koskinopoulou, M., Sharifi, E., & Sartorius, R.(2023). Engineering and development of a tissue model for the evaluation of microneedle penetration ability, drug diffusion, photothermal activity, and ultrasound imaging: a promising surrogate to ex vivo and in vivo tissues. Advanced Materials, 2210034.

    Google Scholar 

  • McLafferty, E., Hendry, C., & Farley, A. (2012). The integumentary system: anatomy, physiology and function of skin. Nursing Standard (Through 2013), 27(3), 35.

    Google Scholar 

  • Mercuri, M., & Fernandez Rivas, D. (2021). Challenges and opportunities for small volumes delivery into the skin. Biomicrofluidics, 15(1), 011301.

    Article  Google Scholar 

  • Mohizin, A., Roy, K. R., Lee, D., Lee, S. K., & Kim, J. K. (2018). Computational fluid dynamics of impinging microjet for a needle-free skin scar treatment system. Computers in Biology and Medicine, 101, 61–69.

    Article  Google Scholar 

  • Narasimhan, A., & Joseph, A. (2015). Porous medium modelling of combined effects of cell migration and anisotropicity of stratum corneum on transdermal drug delivery.

    Google Scholar 

  • Piipponen, M., Li, D., & Landén, N. X. (2020). The immune functions of keratinocytes in skin wound healing. International Journal of Molecular Sciences, 21(22), 8790.

    Article  Google Scholar 

  • Ponmozhi, J., Dhinakaran, S., Varga-Medveczky, Z., Fónagy, K., Bors, L. A., Iván, K., & ErdÅ‘, F. (2021). Development of skin-on-a-chip platforms for different utilizations: Factors to be considered. Micromachines, 12(3), 294. Programmable and skin temperature–activated electromechanical synergistic dressing for effective wound healing. Science Advances, 8(4), eabl8379.

    Google Scholar 

  • Rehfeld, A., Nylander, M., Karnov, K., Rehfeld, A., Nylander, M., & Karnov, K. (2017). The integumentary system. Compendium of Histology: A Theoretical and Practical Guide, 411–432.

    Google Scholar 

  • Reid, L. (2021). An introduction to biomedical computational fluid dynamics. Biomedical Visualisation:, 10, 205–222.

    Article  Google Scholar 

  • Richardson, M. (2003). Understanding the structure and function of the skin. Nursing times, 99(31), 46–48.

    Google Scholar 

  • Rodríguez, M. R., Otero, A. T., Acha, L. Y., Gutiérrez-Rivera, A., Paredes, J., Izeta, A., & Aldazabal, J. (2017). Study and analysis of the effects of psychological stress, mechanical stresses and wound shape in wound healing process both in vivo and in silico. Statistics, 100, 1.

    Google Scholar 

  • Romanovsky, A. A. (2014). Skin temperature: Its role in thermoregulation. Acta Physiologica, 210(3), 498–507.

    Article  Google Scholar 

  • Ruela, A. L. M., Perissinato, A. G., Lino, M. E. D. S., Mudrik, P. S., & Pereira, G. R. (2016). Evaluation of skin absorption of drugs from topical and transdermal formulations. Brazilian Journal of Pharmaceutical Sciences, 52, 527–544.

    Article  Google Scholar 

  • Singh, G., & Chanda, A. (2022). Biomechanical modelling of progressive wound healing: A computational study. Biomedical Engineering Advances, 4, 100055.

    Article  Google Scholar 

  • Tayyaba, S., Ashraf, M. W., Tariq, M. I., Nazir, M., Afzulpurkar, N., Balas, M. M., & Mihalache, S. F. (2020). Skin insertion analysis of microneedle using ANSYS and fuzzy logic. Journal of Intelligent & Fuzzy Systems, 38(5), 5885–5895.

    Article  Google Scholar 

  • Tepole, A. B. (2017). Computational systems mechanobiology of wound healing.

    Google Scholar 

  • Yang, G., Long, H., Wu, J., & Huang, H. (2008, May). A novel electrical field bioreactor for wound healing study. In 2008 International Conference on BioMedical Engineering and Informatics (Vol. 2, pp. 548–552). IEEE.

    Google Scholar 

  • Yao, G., Mo, X., Yin, C., Lou, W., Wang, Q., Huang, S., Mao, L., et al.: A programmable and skin temperature–activated electromechanical synergistic dressing for effective wound healing. Science Advances 8(4), eabl8379 (2022)

    Google Scholar 

  • Yousef, H., Alhajj, M., & Sharma, S. (2022). Anatomy, skin (integument), epidermis. StatPearls. Treasure Island.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Eswari Jujjavarapu .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jujjavarapu, S.E., Kumar, T., Gupta, S. (2024). Computational Fluid Dynamics in the Human Integumentary Systems. In: Computational Fluid Dynamics Applications in Bio and Biomedical Processes. Springer, Singapore. https://doi.org/10.1007/978-981-99-7129-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7129-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7128-2

  • Online ISBN: 978-981-99-7129-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics