Skip to main content

PCPI: Prediction of circRNA and Protein Interaction Using Machine Learning Method

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14248))

Included in the following conference series:

  • 684 Accesses

Abstract

Circular RNA (circRNA) is an RNA molecule different from linear RNA with covalently closed loop structure. CircRNAs can act as sponging miRNAs and can interact with RNA binding protein. Previous studies have revealed that circRNAs play important role in the development of different diseases. The biological functions of circRNAs can be investigated with the help of circRNA-protein interaction. Due to scarce circRNA data, long circRNA sequences and the sparsely distributed binding sites on circRNAs, much fewer endeavors are found in studying the circRNA-protein interaction compared to interaction between linear RNA and protein. With the increase in experimental data on circRNA, machine learning methods are widely used in recent times for predicting the circRNA-protein interaction. The existing methods either use RNA sequence or protein sequence for predicting the binding sites. In this paper, we present a new method PCPI (Predicting CircRNA and Protein Interaction) to predict the interaction between circRNA and protein using support vector machine (SVM) classifier. We have used both the RNA and protein sequences to predict their interaction. The circRNA sequences were converted in pseudo peptide sequences based on codon translation. The pseudo peptide and the protein sequences were classified based on dipole moments and the volume of the side chains. The 3-mers of the classified sequences were used as features for training the model. Several machine learning model were used for classification. Comparing the performances, we selected SVM classifier for predicting circRNA-protein interaction. Our method achieved 93% prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, L., et al.: Comprehensive analysis of CircRNA expression Bprofiles in humans by RAISE. Int. J. Oncol. 51, 1625–1638 (2017). https://doi.org/10.3892/ijo.2017.4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., Kjems, J.: The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. Li, X., Yang, L., Chen, L.L.: The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 71, 428–442 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Jeck, W.R., et al.: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013). https://doi.org/10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansen, T.B., et al.: Natural RNA circles function as efficient microRNA sponges. Nat. 495, 384–388 (2013). https://doi.org/10.1038/nature11993

    Article  CAS  Google Scholar 

  6. Hentze, M.W., Preiss, T.: Circular RNAs: splicing’s enigma variations. EMBO J. 32, 923–925 (2013). https://doi.org/10.1038/emboj.2013.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, G.F., Li, L., Yao, Z.Q., Zhuang, S.J.: Hsa_circ_0007534/MiR-761/ZIC5 Regulatory loop modulates the proliferation and migration of glioma cells. Biochem. Biophys. Res. Commun. 499, 765–771 (2018). https://doi.org/10.1016/j.bbrc.2018.03.219

    Article  CAS  PubMed  Google Scholar 

  8. Han, D., et al.: Circular RNA CircMTO1 acts as the sponge of MicroRNA-9 to suppress hepatocellular carcinoma progression. Hepatol. 66, 1151–1164 (2017). https://doi.org/10.1002/hep.29270

    Article  CAS  Google Scholar 

  9. Huang, W.J., et al.: Silencing Circular RNA Hsa_circ_0000977 suppresses pancreatic ductal adenocarcinoma progression by stimulating MiR-874-3p and inhibiting PLK1 expression. Cancer Lett. 422, 70–80 (2018)

    Google Scholar 

  10. Chen, J., et al.: Circular RNA profile identifies CircPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 388, 208–219 (2017). https://doi.org/10.1016/j.canlet.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  11. Xu, T., Wu, J., Han, P., Zhao, Z., Song, X.: Circular RNA expression profiles and features in human tissues: a study using RNA-Seq data. BMC Genomics 18 (2017). https://doi.org/10.1186/s12864-017-4029-3

  12. Tucker, D., Zheng, W., Zhang, D.-H., Dong, X.: Circular RNA and its potential as prostate cancer biomarkers. World J. Clin. Oncol. 11, 563–572 (2020). https://doi.org/10.5306/wjco.v11.i8.563

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, Z., Chen, Z., Hu, G.H., Jiang, Y.: Roles of circular RNA in breast cancer: present and future. Am. J. Transl. Res. 11, 3945–3954 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Du, W.W., Zhang, C., Yang, W., Yong, T., Awan, F.M., Yang, B.B.: Identifying and characterizing CircRNA-Protein interaction. Theranostics 7, 4183–4191 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zang, J., Lu, D., Xu, A.: The interaction of CircRNAs and RNA binding proteins: an important part of CircRNA maintenance and function. J. Neurosci. Res. 98, 87–97 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y.E., et al.: Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites. Genome Biol. 18 (2017). https://doi.org/10.1186/s13059-017-1298-8

  17. Yang, Y.C.T., et al.: CLIPdb: a CLIP-Seq database for protein-RNA interactions. BMC Genomics 16 (2015). https://doi.org/10.1186/s12864-015-1273-2

  18. Li, J.H., Liu, S., Zhou, H., Qu, L.H., Yang, J.H.: StarBase v2.0: decoding MiRNA-CeRNA, MiRNA-NcRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42 (2014). https://doi.org/10.1093/nar/gkt1248

  19. Zhao, H., Yang, Y., Zhou, Y.: Prediction of RNA binding proteins comes of age from low resolution to high resolution. Mol. Biosyst. 9, 2417–2425 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. Fornes, O., Garcia-Garcia, J., Bonet, J., Oliva, B.: On the use of knowledge-based potentials for the evaluation of models of Protein-Protein, Protein-DNA, and Protein-RNA interactions. Adv. Protein Chem. Struct. Biol. 94, 77–120 (2014). ISBN 9780128001684

    Google Scholar 

  21. Kauffman, C., Karypis, G.: Computational tools for Protein-DNA interactions. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2, 14–28 (2012)

    Google Scholar 

  22. Liu, L.A., Bradley, P.: Atomistic modeling of Protein-DNA interaction specificity: progress and applications. Curr. Opin. Struct. Biol. 22, 397–405 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Choi, S., Han, K.: Predicting Protein-binding RNA nucleotides using the feature-based removal of data redundancy and the interaction propensity of nucleotide triplets. Comput. Biol. Med. 43, 1687–1697 (2013). https://doi.org/10.1016/j.compbiomed.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  24. Panwar, B., Raghava, G.P.S.: Identification of Protein-Interacting nucleotides in a RNA sequence using composition profile of Tri-Nucleotides. Genomics 105, 197–203 (2015). https://doi.org/10.1016/j.ygeno.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  25. Jia, C., Bi, Y., Chen, J., Leier, A., Li, F., Song, J.: PASSION: an ensemble neural network approach for identifying the binding sites of RBPs on CircRNAs. Bioinformatics 36, 4276–4282 (2020). https://doi.org/10.1093/bioinformatics/btaa522

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Z., Lei, X.: Matrix factorization with neural network for predicting CircRNA-RBP interactions. BMC Bioinform. 21 (2020). https://doi.org/10.1186/s12859-020-3514-x

  27. Conn, S.J., et al.: The RNA binding protein quaking regulates formation of CircRNAs. Cell 160, 1125–1134 (2015). https://doi.org/10.1016/j.cell.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  28. Abdelmohsen, K., et al.: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361–369 (2017). https://doi.org/10.1080/15476286.2017.1279788

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dudekula, D.B., Panda, A.C., Grammatikakis, I., De, S., Abdelmohsen, K., Gorospe, M.: Circinteractome: a web tool for exploring circular RNAs and their interacting proteins and MicroRNAs. RNA Biol. 13, 34–42 (2016). https://doi.org/10.1080/15476286.2015.1128065

    Article  PubMed  Google Scholar 

  30. Okholm, T.L.H., et al.: Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Med. 12 (2020). https://doi.org/10.1186/s13073-020-00812-8

  31. Zhou, H.L., Mangelsdorf, M., Liu, J.H., Zhu, L., Wu, J.Y.: RNA-binding proteins in neurological diseases. Sci. China Life Sci. 57, 432–444 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. Pereira, B., Billaud, M., Almeida, R.: RNA-binding proteins in cancer: old players and new actors. Trends in Cancer 3, 506–528 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. Prashad, S., Gopal, P.P.: RNA-binding proteins in neurological development and disease. RNA Biol. 18, 972–987 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, K., Pan, X., Yang, Y., Shen, H.: Bin CRIP: predicting CircRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks. RNA 25, 1604–1615 (2019). https://doi.org/10.1261/rna.070565.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maticzka, D., Lange, S.J., Costa, F., Backofen, R.: GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol. 15 (2014). https://doi.org/10.1186/gb-2014-15-1-r17

  36. Corrado, G., Tebaldi, T., Costa, F., Frasconi, P., Passerini, A.: RNAcommender: genome-wide recommendation of RNA-Protein interactions. Bioinformatics 32, 3627–3634 (2016). https://doi.org/10.1093/bioinformatics/btw517

    Article  CAS  PubMed  Google Scholar 

  37. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015). https://doi.org/10.1038/nbt.3300

    Article  CAS  PubMed  Google Scholar 

  38. Pan, X., Shen, H.: Bin predicting RNA-Protein binding sites and motifs through combining local and global deep convolutional neural networks. Bioinformatics 34, 3427–3436 (2018). https://doi.org/10.1093/bioinformatics/bty364

    Article  CAS  PubMed  Google Scholar 

  39. Yuan, L., Yang, Y.: DeCban: prediction of CircRNA-RBP interaction sites by using double embeddings and cross-branch attention networks. Front. Genet. 11 (2021). https://doi.org/10.3389/fgene.2020.632861

  40. Niu, M., Zou, Q., Lin, C.: CRBPDL: identification of CircRNA-RBP interaction sites using an ensemble neural network approach. PLoS Comput. Biol. 18 (2022). https://doi.org/10.1371/journal.pcbi.1009798

  41. Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W.: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012). https://doi.org/10.1093/bioinformatics/bts565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shen, J., et al.: Predicting protein-protein interactions based only on sequences information. Proc. Natl. Acad. Sci. U.S.A. 104, 4337–4341 (2007). https://doi.org/10.1073/pnas.0607879104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muppirala, U.K., Honavar, V.G., Dobbs, D.: Predicting RNA-protein interactions using only sequence information. BMC Bioinform. 12 (2011). https://doi.org/10.1186/1471-2105-12-489

  44. Pan, X., Shen, H.: Bin RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. BMC Bioinform. 18 (2017). https://doi.org/10.1186/s12859-017-1561-8

  45. Pan, X., Rijnbeek, P., Yan, J., Shen, H.: Bin prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics 19 (2018). https://doi.org/10.1186/s12864-018-4889-1

Download references

Funding

This work was partly supported by the Key Research and Development Project of Guangdong Province under grant No. 2021B0101310002, National Key Research and Development Program of China Grant No. 2021YFF1200100, Strategic Priority CAS Project XDB38050100, National Science Foundation of China under grant No. 62272449, the Shenzhen Basic Research Fund under grant, No. RCYX20200714114734194, KQTD20200820113106007 and ZDSYS20220422103800001. We would also like to thank the funding support by the Youth Innovation Promotion Association (Y2021101), CAS to Yanjie Wei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjie Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossain, M., Reza, M., Li, X., Peng, Y., Feng, S., Wei, Y. (2023). PCPI: Prediction of circRNA and Protein Interaction Using Machine Learning Method. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2023. Lecture Notes in Computer Science(), vol 14248. Springer, Singapore. https://doi.org/10.1007/978-981-99-7074-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7074-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7073-5

  • Online ISBN: 978-981-99-7074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics