Skip to main content

Enhancing Interpretability in CT Reconstruction Using Tomographic Domain Transform with Self-supervision

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14327))

Included in the following conference series:

  • 544 Accesses

Abstract

Computed tomography (CT) reconstruction faces difficulties in dealing with artifacts caused by imperfect imaging processes. Deep learning-based CT reconstruction models have been proposed to address these challenges, but they often lack interpretability since they use end-to-end neural networks to directly transform signals from sinograms to CT sections. Additionally, supervised methods are commonly used to guide network training, yet obtaining supervision information can be challenging in biomedical imaging systems. To overcome these limitations, we propose a new domain transform CT reconstruction framework that includes self-supervision. Our approach interprets sinogram signals as tomographic information in the CT section domain, which is then used to formulate pixel intensities with a simple mean operation. A refinement network is utilized to improve the quality of the CT images, which are further processed using the Radon transform to achieve simulated sinograms without requiring additional supervision. Our experimental results demonstrate the effectiveness of the proposed framework in both anatomical structure reconstruction and artifact reduction.

This work is partially supported by the National Natural Science Foundation of China Youth Found under Grant 62202391.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94 (1984)

    Article  Google Scholar 

  2. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Beatty, J.: The radon transform and the mathematics of medical imaging (2012)

    Google Scholar 

  5. Candes, E.J., Romberg, J.K.: Signal recovery from random projections. In: Computational Imaging III. vol. 5674, pp. 76–86. SPIE (2005)

    Google Scholar 

  6. Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  7. Chen, H., et al.: Low-dose CT denoising with convolutional neural network. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 143–146. IEEE (2017)

    Google Scholar 

  8. Ernst, P., Chatterjee, S., Rose, G., Speck, O., Nürnberger, A.: Sinogram upsampling using primal-dual UNet for undersampled CT and radial MRI reconstruction. arXiv preprint arXiv:2112.13443 (2021)

  9. Ge, R., et al.: DDPNet: a novel dual-domain parallel network for low-dose CT reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VI, pp. 748–757. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_71

    Chapter  Google Scholar 

  10. Getreuer, P.: Rudin-Osher-Fatemi total variation denoising using split Bregman. Image Process. Line 2, 74–95 (2012)

    Article  Google Scholar 

  11. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  12. Jun, K.: Virtual multi-alignment theory of parallel-beam CT image reconstruction for rigid objects. Sci. Rep. 9(1), 13518 (2019)

    Article  Google Scholar 

  13. Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. In: SIAM (2001)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Lee, H., Lee, J., Kim, H., Cho, B., Cho, S.: Deep-neural-network-based Sinogram synthesis for sparse-view cCTimage reconstruction. IEEE Trans. Radiation Plasma Med. Sci. 3(2), 109–119 (2018)

    Article  Google Scholar 

  16. Leuschner, J., Schmidt, M., Baguer, D.O., Maaß, P.: The lodopab-ct dataset: A benchmark dataset for low-dose ct reconstruction methods. arXiv preprint arXiv:1910.01113 (2019)

  17. Li, Z., et al.: Promising generative adversarial network based Sinogram inpainting method for ultra-limited-angle computed tomography imaging. Sensors 19(18), 3941 (2019)

    Article  Google Scholar 

  18. Loshchilov, I., Hutter, F.S.: Stochastic gradient descent with warm restarts (2016)

    Google Scholar 

  19. Ronchetti, M.: Torchradon: Fast differentiable routines for computed tomography. arXiv preprint arXiv:2009.14788 (2020)

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sidky, E.Y., Pan, X.: Report on the AAPM deep-learning sparse-view CT grand challenge. Med. Phys. 49(8), 4935–4943 (2022)

    Article  Google Scholar 

  22. Song, Y., Shen, L., Xing, L., Ermon, S.: Solving inverse problems in medical imaging with score-based generative models. arXiv preprint arXiv:2111.08005 (2021)

  23. Trancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)

    Google Scholar 

  24. Unal, M.O., Ertas, M., Yildirim, I.: Self-supervised training for low-dose CT reconstruction. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 69–72. IEEE (2021)

    Google Scholar 

  25. Unal, M.O., Ertas, M., Yildirim, I.: An unsupervised reconstruction method for low-dose CT using deep generative regularization prior. Biomed. Signal Process. Control 75, 103598 (2022)

    Article  Google Scholar 

  26. Wang, C., et al.: Improving generalizability in limited-angle CT reconstruction with Sinogram extrapolation. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI, pp. 86–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_9

    Chapter  Google Scholar 

  27. Wang, G., Ye, J.C., De Man, B.: Deep learning for tomographic image reconstruction. Nature Mach. Intell. 2(12), 737–748 (2020)

    Article  Google Scholar 

  28. Wang, H., et al.: InDuDoNet: an interpretable dual domain network for CT metal artifact reduction. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI, pp. 107–118. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_11

    Chapter  Google Scholar 

  29. Yu, H., Wang, G.: Compressed sensing based interior tomography. Phys. Med. Biol. 54(9), 2791 (2009)

    Article  Google Scholar 

  30. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)

    Google Scholar 

  31. Zang, G., Idoughi, R., Li, R., Wonka, P., Heidrich, W.: Intratomo: self-supervised learning-based tomography via sinogram synthesis and prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1960–1970 (2021)

    Google Scholar 

  32. Zhang, H., Liu, B., Yu, H., Dong, B.: Metainv-net: meta inversion network for sparse view CT image reconstruction. IEEE Trans. Med. Imaging 40(2), 621–634 (2020)

    Article  Google Scholar 

  33. Zhang, H., et al.: Image prediction for limited-angle tomography via deep learning with convolutional neural network. arXiv preprint arXiv:1607.08707 (2016)

  34. Zhao, J., Chen, Z., Zhang, L., Jin, X.: Unsupervised learnable sinogram inpainting network (sin) for limited angle CT reconstruction. arXiv preprint arXiv:1811.03911 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, B., Tan, B., Tang, X., Xiao, G. (2024). Enhancing Interpretability in CT Reconstruction Using Tomographic Domain Transform with Self-supervision. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14327. Springer, Singapore. https://doi.org/10.1007/978-981-99-7025-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7025-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7024-7

  • Online ISBN: 978-981-99-7025-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics