Skip to main content

AI-Based Intelligent-Annotation Algorithm for Medical Segmentation from Ultrasound Data

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14327))

Included in the following conference series:

  • 573 Accesses

Abstract

The management of prostate cancer, a prevalent source of mortality in men, calls for meticulous delineation of the prostate in transrectal ultrasound (TRUS) images for effective treatment planning. This paper introduces a hybrid artificial intelligence approach for prostate delineation, leveraging prior information from experts, a machine learning model, and a quantum-inspired evolutionary network to augment the accuracy of prostate segmentation. The approach incorporates three novel elements: 1) limited prior information from expert and adaptive polygon tracking (APT) module for initial segmentation; 2) a novel historical storage-based quantum-inspired evolutionary network (HQIE) mechanism to search for the optimal neural network and enhancing solution diversity and capacity to address unimodal and multimodal challenges, and 3) a unique mathematical formulation denoted by parameters of the neural network is used to achieve smooth prostate periphery. The method was evaluated across various noise conditions and against several state-of-the-art methods using a multi-center dataset. In addition, an ablation study was performed to evaluate the efficacy of each component. The results demonstrated the superior performance of the hybrid AI method (Dice index: 96.4 ± 2.4%) against state-of-the-art deep learning methods (e.g., UTNet, Dice index: 90.1 ± 5.7%). The hybrid method also showed higher robustness to image noise than traditional methods. This study suggests new insights and technical approaches in the field of prostate segmentation using hybrid artificial intelligence methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swami, U., McFarland, T.R., Nussenzveig, R., Agarwal, N.: Advanced prostate cancer: treat ment advances and future directions. Trends in Cancer. 6, 702–715 (2020)

    Article  Google Scholar 

  2. Peng, T., Wu, Y., Zhao, J., Zhang, B., Wang, J., Cai, J.: Explainability-guided mathematical model-based segmentation of transrectal ultrasound images for prostate brachytherapy, In: IEEE 16th International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1126–1131 (2022)

    Google Scholar 

  3. Orlando, N., Gillies, D.J., Gyacskov, I., Romagnoli, C., D’Souza, D., Fenster, A.: Automatic pros tate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Med. Phys. 47, 2413–2426 (2020)

    Article  Google Scholar 

  4. Lei, Y., et al.: Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net. Med. Phys. 46, 3194–3206 (2019)

    Article  Google Scholar 

  5. Peng, T., Wang, Y., Xu, T.C., Shi, L., Jiang, J., Zhu, S.: Detection of lung contour with closed principal curve and machine learning. J. Digit. Imaging 31, 520–533 (2018)

    Article  Google Scholar 

  6. Cobos, C., Muñoz-Collazos, H., Urbano-Muñoz, R., Mendoza, M., León, E., Herrera-Viedma, E.: Clustering of web search results based on the cuckoo search algorithm and Balanced Bayesian Information Criterion. Inf. Sci. 281, 248–264 (2014)

    Article  Google Scholar 

  7. Vesal, S., et al.: Domain generalization for prostate segmentation in transrectal ultrasound images: A multi-center study. Med. Image Anal. 82, 102620 (2022)

    Article  Google Scholar 

  8. He, K., et al.: MetricUNet: Synergis tic image- and voxel-level learning for precise prostate segmentation via online sampling. Med. Image Anal. 71, 102039 (2021)

    Article  Google Scholar 

  9. Zavala-Romero, O., et al.: Segmentation of prostate and prostate zones using deep learning: A multi-MRI vendor analysis. Strahlenther. Onkol.. Onkol. 196, 932–942 (2020)

    Article  Google Scholar 

  10. Xu, X., Sanford, T., Turkbey, B., Xu, S., Wood, B.J., Yan, P.: Shadow-consistent semi-super vised learning for prostate ultrasound segmentation. IEEE Trans. Med. Imaging 41, 1331–1345 (2022)

    Article  Google Scholar 

  11. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: Redesigning skip connec tions to exploit multiscale features in image segmentation, IEEE Trans. Med. Imaging. 39, 1856–1867 (2020)

    Google Scholar 

  12. Gao, Y., Zhou, M., Metaxas, D.: UTNet: a hybrid transformer architecture for medical image segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 61–71 (2021)

    Google Scholar 

  13. Peng, T., Tang, C., Wu, Y., Cai, J.: H-SegMed: a hybrid method for prostate segmentation in TRUS images via improved closed principal curve and improved enhanced machine learning. Int. J. Comput. Vis.Comput. Vis. 130, 1896–1919 (2022)

    Article  Google Scholar 

  14. Zeng, Q., et al.: Segmentation in transrectal ultrasound using magnetic resonance imaging priors, Int. J. Comput. Assist. Radiol. Surg. 13, 749–757 (2018)

    Google Scholar 

  15. Godley, A., Sheplan Olsen, L.J., Stephans, K., Zhao, A.: Combining prior day contours to improve automated prostate segmentation: combining previous contours for automated prostate segmentation, Med. Phys. 40, 021722 (2013)

    Google Scholar 

  16. Karimi. D., et al.: Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images, Med. Image Anal. 57, 186–196 (2019)

    Google Scholar 

  17. Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84, 502–516 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kegl, B., Krzyzak, A.: Piecewise linear skeletonization using principal curves, IEEE Trans. Pattern Anal. Machine Intell. 24, 59–74 (2002)

    Google Scholar 

  19. Kegl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Trans. Pattern Anal. Machine Intell. 22, 281–297 (2000)

    Article  Google Scholar 

  20. Peng, T., Xu, T.C., Wang, Y., Li, F.: Deep belief network and closed polygonal line for lung segmentation in chest radiographs. Comput. J. (2020)

    Google Scholar 

  21. Peng, T., Wu, Y. , Qin, J., Wu, Q.J. , Cai, J.: H-ProSeg: hybrid ultrasound prostate segmentation based on explainability-guided mathematical model. Comput. Methods Programs Biomed. 219, 106752 (2022)

    Google Scholar 

  22. Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognit. 38, 2270–2285 (2005)

    Article  Google Scholar 

  23. Kabir, W., Ahmad, M.O., Swamy, M.N.S.: A novel normalization technique for multimodal biometric systems. In: 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4,  IEEE, Fort Collins, CO, USA (2015)

    Google Scholar 

  24. Su, H., Yang, Y.: Differential evolution and quantum-inquired differential evolution for evolving Takagi-Sugeno fuzzy models. Expert Syst. Appl. 38, 6447–6451 (2011)

    Article  Google Scholar 

  25. Ali, M.Z., Awad, N.H., Suganthan, P.N., Reynolds, R.G.: An adaptive multipopulation differ ential evolution with dynamic population reduction. IEEE Trans. Cybern. 47, 2768–2779 (2017)

    Article  Google Scholar 

  26. Cui, L., Li, G., Zhu, Z., Wen, Z., Lu, N., Lu, J.: A novel differential evolution algorithm with a self-adaptation parameter control method by differential evolution. Soft. Comput.Comput. 22, 6171–6190 (2018)

    Article  Google Scholar 

  27. Peng, T., Zhao, J., Gu, Y., Wang, C., Wu, Y., Cheng, X., Cai, J.: H-ProMed: Ultrasound image segmentation based on the evolutionary neural network and an improved principal curve. Pattern Recognit. 131, 108890 (2022)

    Google Scholar 

  28. Peng, T., et al.: Hybrid automatic lung segmentation on chest ct scans. IEEE Access. 8, 73293–73306 (2020)

    Article  Google Scholar 

  29. Benaichouche, A.N., Oulhadj, H., Siarry, P.: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digit. Signal Process. 23, 1390–1400 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Peng or Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, T. et al. (2024). AI-Based Intelligent-Annotation Algorithm for Medical Segmentation from Ultrasound Data. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14327. Springer, Singapore. https://doi.org/10.1007/978-981-99-7025-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7025-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7024-7

  • Online ISBN: 978-981-99-7025-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics