Skip to main content

PruVer: Verification Assisted Pruning for Deep Reinforcement Learning

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Abstract

Active deployment of Deep Reinforcement Learning (DRL) based controllers on safety-critical embedded platforms require model compaction. Neural pruning has been extensively studied in the context of CNNs and computer vision, but such approaches do not guarantee the preservation of safety in the context of DRL. A pruned network converging to high reward may not adhere to safety requirements. This paper proposes a framework, PruVer, that performs iterative refinement on a pruned network with verification in the loop. This results in a compressed network that adheres to safety specifications with formal guarantees over small time horizons. We demonstrate our method in model-free RL environments, achieving 40–60% compaction, significant latency benefits (3 to 10 times), and bounded guarantees for safety properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/britig/PruVer.

References

  1. Amir, G., Schapira, M., Katz, G.: Towards scalable verification of deep reinforcement learning. In: Formal Methods in Computer Aided Design, FMCAD 2021, New Haven, CT, USA, October 19–22, 2021, pp. 193–203. IEEE (2021)

    Google Scholar 

  2. Angeli, D., et al.: Monotone control systems. IEEE Trans. Autom. Control 48(10), 1684–1698 (2003). https://doi.org/10.1109/TAC.2003.817920

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnob, S.Y., Ohib, R., Plis, S., Precup, D.: Single-shot pruning for offline reinforcement learning. arXiv preprint arXiv:2112.15579 (2021)

  4. Blalock, D., et al.: What is the state of neural network pruning? Proc. Mach. Learn. Syst. 2, 129–146 (2020)

    Google Scholar 

  5. Brockman, G., et al.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

  6. Coogan, S.: Mixed monotonicity for reachability and safety in dynamical systems. In: 2020 59th IEEE Conference on Decision and Control, pp. 5074–5085 (2020)

    Google Scholar 

  7. Deng, C., Sui, Y., Liao, S., Qian, X., Yuan, B.: GoSPA: an energy-efficient high-performance globally optimized SParse convolutional neural network accelerator. In: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pp. 1110–1123 (2021). https://doi.org/10.1109/ISCA52012.2021.00090

  8. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_9

    Chapter  Google Scholar 

  9. Evci, U., Pedregosa, F., Gomez, A., Elsen, E.: The difficulty of training sparse neural networks. arXiv preprint arXiv:1906.10732 (2019)

  10. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: 7th International Conference on Learning Representations, ICLR New Orleans, LA, USA, May 6–9 (2019)

    Google Scholar 

  11. Gangopadhyay, B., et al.: Hierarchical program-triggered reinforcement learning agents for automated driving. IEEE Trans. Intell. Transp. Syst. 23(8), 10902–10911 (2022). https://doi.org/10.1109/TITS.2021.3096998

    Article  Google Scholar 

  12. Gangopadhyay, B., et al.: Safety aware neural pruning for deep reinforcement learning (student abstract). Proc. AAAI 37(13), 16212–16213 (2023)

    Article  Google Scholar 

  13. García, J., Fernández, F.: A comprehensive survey on safe reinforcement learning. J. Mach. Learn. Res. 16(42), 1437–1480 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Graesser, L., et al.: The state of sparse training in deep reinforcement learning. In: International Conference on Machine Learning, pp. 7766–7792. PMLR (2022)

    Google Scholar 

  15. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  16. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  17. Katz, G., et al.: The marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

    Chapter  Google Scholar 

  18. Kusupati, A., et al.: Soft threshold weight reparameterization for learnable sparsity. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning, vol. 119, pp. 5544–5555. PMLR (2020)

    Google Scholar 

  19. Mocanu, D.C., et al.: Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nat. Commun. 9(1), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  20. Moore, A.W.: Efficient memory-based learning for robot control. Tech. Rep. University of Cambridge (1990)

    Google Scholar 

  21. Rusu, A.A., et al.: Policy distillation. In: 4th International Conference on Learning Representations, ICLR (2016)

    Google Scholar 

  22. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–359 (2017). https://doi.org/10.1038/nature24270

  23. Sokar, G., Mocanu, E., et al.: Dynamic sparse training for deep reinforcement learning. arXiv preprint arXiv:2106.04217 (2021)

  24. Vischer, M.A., et al.: On lottery tickets and minimal task representations in deep reinforcement learning. arXiv preprint arXiv:2105.01648 (2021)

  25. Zhang, H., et al.: Accelerating the deep reinforcement learning with neural network compression. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Briti Gangopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gangopadhyay, B., Dasgupta, P., Dey, S. (2024). PruVer: Verification Assisted Pruning for Deep Reinforcement Learning. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14325. Springer, Singapore. https://doi.org/10.1007/978-981-99-7019-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7019-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7018-6

  • Online ISBN: 978-981-99-7019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics