Skip to main content

Research on 3D Positioning Technology of UWB Single Base Station

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC 2024) Proceedings (CSNC 2024)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1092))

Included in the following conference series:

  • 350 Accesses

Abstract

In recent years, in the context of smart cities and the internet of everything, with the rapid development of the intelligent indoor environment, the demand for indoor location services in many industries has become higher and higher, and the need for real-time location of personnel has become more and more urgent. In this paper, a UWB-based circular antenna array single base station is designed for indoor space single base station 3D positioning problem, and the joint Time of Arrival (TOA)/Angle of Arrival (AOA) positioning estimation algorithm is studied. In terms of direction finding, a five-array element direction finding model is established using a uniform circular array, and the Phase Difference of Arrival (PDOA) algorithm is combined to obtain the signal arrival angle information, and TOA is used to complete the distance measurement between the base station and the label, to achieve the calculation of label location information. Also, for the consideration of improving the accuracy of angle measurement, the ambiguity resolution method of antenna array element phase difference for long baseline is proposed. Finally, the system performance was tested and verified in the experimental environments. The results show that the UWB single base station can be used to achieve indoor 3D positioning, its positioning accuracy is better than 1m. Furthermore, the technology can effectively solve problems such as the high deployment cost of multiple base stations, complicated system construction, and so on in practical applications with more excellent application and promotion value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lymberopoulos, D., Liu, J.: The microsoft indoor localization competition: experiences and lessons learned. IEEE Signal Process. Mag. 34(5), 125–140 (2017)

    Article  Google Scholar 

  2. Bi, J., Zhao, M., Yao, G., Cao, H., Feng, Y., Jiang, H., Chai, D.: PSOSVRPos: WiFi indoor positioning using SVR optimized by PSO. Expert Syst. Appl., Volume 222, 2023, 119778, ISSN 0957–4174

    Google Scholar 

  3. Alarifi, A., et al.: Ultra wideband indoor positioning technologies: analysis and recent advances. Sensors 16(5), 707 (2016)

    Article  Google Scholar 

  4. Iwakiri, N., Kobayashi, T.: Joint TOA and AOA estimation of UWB signal using time domain smoothing. In: 2007 2nd International Symposium on Wireless Pervasive Computing. IEEE (2007)

    Google Scholar 

  5. Ding, R., Qian, Z., Wang, X.: UWB localization method based on TOA and DOA joint estimation. J. Electron. Inf. Technol. 02, 313–317 (2010)

    Article  Google Scholar 

  6. Smaoui, N., Heydariaan, M., Gnawail, O.: Single-antenna aoa estimation with uwb radios. In: 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–7. IEEE (2021)

    Google Scholar 

  7. Nouali, I.Y., Slimane, Z., Abdelmalek, A.: Change point detection-based TOA estimation in UWB indoor ranging systems. In: 2022 45th International Conference on Telecommunications and Signal Processing (TSP), pp. 329–332. IEEE (2022)

    Google Scholar 

  8. Zhang, K., Shen, C., Bao, M., Vaniushkina, D., Kumushai, K., Zang, L.: Research on optimization algorithm based on PDOA. In: 2021 IEEE 21st International Conference on Communication Technology (ICCT), pp. 1427–1430. IEEE (2021)

    Google Scholar 

  9. Dotlic, I., Connell, A., Ma, H., Clancy, J., McLaughlin, M.: Angle of arrival estimation using decawave DW1000 integrated circuits. In: 2017 14th Workshop on Positioning, Navigation and Communications (WPNC), pp. 1–6. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Aerospace Information Research Institute

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Huang, L., Su, J., Yang, Z., Yi, Q. (2024). Research on 3D Positioning Technology of UWB Single Base Station. In: Yang, C., Xie, J. (eds) China Satellite Navigation Conference (CSNC 2024) Proceedings. CSNC 2024. Lecture Notes in Electrical Engineering, vol 1092. Springer, Singapore. https://doi.org/10.1007/978-981-99-6928-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6928-9_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6927-2

  • Online ISBN: 978-981-99-6928-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics