Skip to main content

Study of Dielectric Characteristics of Forsterite-Based Medical Implant

  • Conference paper
  • First Online:
Emerging Electronics and Automation (E2A 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1088))

Included in the following conference series:

  • 105 Accesses

Abstract

In this paper, we propose an easy and faster way to prepare forsterite (\({\text {Mg}}_{2}{\text {SiO}}_{4}\))-based bio-material for preparing medical implants. In particular, we use the sol-gel method to prepare the forsterite-based bio-material. Next, we use scanning electron microscopy (SEM) to characterize the morphology of the prepared forsterite. For the elemental composition of the prepared forsterite powder, we use the Energy Dispersive X-ray (EDX) technique. The characterization shows that the prepared bio-material is porous, and the EDX analysis confirmed the formation of forsterite powder. Furthermore, for the prepared implant bio-material, we also examine the dielectric properties (such as dielectric constant, dielectric loss, alternating current conductivity, and loss tangent) and the variation of the dielectric properties with frequency (200 MHz–20 GHz) at room temperature. Finally, the analysis shows that forsterite can be a potential bio-material in medical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dang ZM, Tian CY, Zha JW, Yao SH, Xia YJ, Li JY, Shi CY, Bai J (2009) Potential bioelectroactive bone regeneration polymer nanocomposites with high dielectric permittivity. Adv Eng Mater 11(10):144–147

    Article  Google Scholar 

  2. Basova TV, Vikulova ES, Dorovskikh SI, Hassan A, Morozova NB (2021) The use of noble metal coatings and nanoparticles for the modification of medical implant materials. Mater Des 204:109672

    Article  Google Scholar 

  3. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Academic Press, San Diego, California

    Google Scholar 

  4. Crawford L, Wyatt M, Bryers J, Ratner B (2021) Biocompatibility evolves: phenomenology to toxicology to regeneration. Adv Healthc Mater 10(11):2002153

    Article  Google Scholar 

  5. Sharkeev Y, Eroshenko A, Legostaeva E, Kovalevskaya Z, Belyavskaya O, Khimich M, Epple M, Prymak O, Sokolova V, Zhu Q, Sun Z (2022) Development of ultrafine-grained and nanostructured bioinert alloys based on titanium, zirconium and niobium and their microstructure. Mech Biol Prop. Metals 12(7):1136

    Google Scholar 

  6. Riester O, Borgolte M, Csuk R, Deigner HP (2020) Challenges in bone tissue regeneration: stem cell therapy, biofunctionality and antimicrobial properties of novel materials and its evolution. Int J Mol Sci 22(1):192

    Article  Google Scholar 

  7. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2017) Biodegradable materials and metallic implants-a review. J Funct Biomater 8(4):44

    Article  Google Scholar 

  8. Naga SM, Hassan AM, Awaad M, Killinger A, Gadow R, Bernstein A, Sayed M (2020) Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications. J Asian Ceram Soc 8(2):373–386

    Article  Google Scholar 

  9. Yetmez M, Erkmen ZE, Kalkandelen CEVR, Äř YE, Ficai A, Oktar FN (2017) Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Mater Sci Eng C 77:470–475

    Google Scholar 

  10. Ammar H, Nasr S, Ageorges H, Salem EB (2020) Sintering and mechanical properties of magnesium containing hydroxyfluorapatite. J Aust Ceram Soc 56(3):931–942

    Article  Google Scholar 

  11. Zarifah NA, Matori KA, Sidek HAA, Wahab ZA, Salleh MM, Zainuddin N, Khiri MZA, Farhana NS, Omar NAS (2016) Effect of hydroxyapatite reinforced with 45S5 glass on physical, structural and mechanical properties. Procedia Chem 19:30–37

    Article  Google Scholar 

  12. Hench LL (1993) An introduction to bioceramics, vol 1. World Scientific

    Google Scholar 

  13. Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method. Mater lett 61(18):3978–3983

    Article  Google Scholar 

  14. Pandey A, Sahoo S (2022) Progress on medical implant: a review and prospects. J Bionic Eng 1–25

    Google Scholar 

  15. Mohseni E, Zalnezhad E, Bushroa AR (2014) Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: a review paper. Int J Adhes Adhes 48:238–257

    Article  Google Scholar 

  16. Srinath P, Abdul Azeem P, Venugopal Reddy K (2020) Review on calcium silicate-based bioceramics in bone tissue engineering. Int J Appl Ceram Technol 17(5):2450–2464

    Article  Google Scholar 

  17. Shahin M, Munir K, Wen C, Li Y (2019) Magnesium matrix nanocomposites for orthopedic applications: a review from mechanical, corrosion, and biological perspectives. Acta Biomater 96:1–19

    Article  Google Scholar 

  18. Kazakos A, Komarneni S, Roy R (1990) Preparation and densification of Forsterite (Mg2SiO4) by nanocomposite sol-gel processing. Mater Lett 9(10):405–409

    Article  Google Scholar 

  19. Sebdani MM, Fathi MH (2011) Novel hydroxyapatite-Forsterite-bioglass nanocomposite coatings with improved mechanical properties. J Alloys Compd 509(5):2273–2276

    Article  Google Scholar 

  20. Itoh S, Nakamura S, Nakamura M, Shinomiya K, Yamashita K (2006) Enhanced bone regeneration by electrical polarization of hydroxyapatite. Artif Organs 30(11):863–869

    Google Scholar 

  21. Nakamura M, Nagai A, Okura T, Sekijima Y, Hentunen T, Yamashita K (2010) Enhanced osteoblastic adhesion through improved wettability on polarized hydroxyapatite. J Ceram Soc Jpn 118(1378):474–478

    Article  Google Scholar 

  22. Al-Hazmi FE (2016) Synthesis and electrical properties of Bi doped hydroxyapatite ceramics. J Alloys Compd 665:119–123

    Article  Google Scholar 

  23. Kaygili O, Dorozhkin SV, Ates T, Gursoy NC, Keser S, Yakuphanoglu F, Selcuk AB (2015) Structural and dielectric properties of yttrium-substituted hydroxyapatites. Mater Sci Eng: C 47:333–338

    Article  Google Scholar 

  24. Paka K, Pokrowiecki R (2018) Porous titanium implants: a review. Adv Eng Mater 20(5):1700648

    Article  Google Scholar 

  25. Kumar A, Mehta N (2017) Studies of dielectric relaxation and thermally activated ac conduction in Se78 - xTe20Sn2Cdx (0 \(\le \) x \(\le \) 6) chalcogenide glass. J Mater Sci: Mater Electron 28(7):5634–5644

    Google Scholar 

  26. Pratapa S, Handoko WD, Nurbaiti U (2017) Synthesis and characterization of high-density B2O3-added Forsterite ceramics. Ceram Int 43(9):7172–7176

    Article  Google Scholar 

  27. Umemura R, Ogawa H, Ohsato H, Kan A, Yokoi A (2005) Microwave dielectric properties of low-temperature sintered Mg3 (VO4) 2 ceramic. J Eur Ceram Soc 25(12):2865–2870

    Article  Google Scholar 

  28. Nurbaiti U, Zainuri M, Pratapa S (2018) Synthesis and characterization of silica sand-derived nano-Forsterite ceramics. Ceram Int 44(5):5543–5549

    Article  Google Scholar 

  29. Zang G, Zhang J, Zheng P, Wang J, Wang C (2005) Grain boundary effect on the dielectric properties of CaCu3Ti4O12 ceramics. J Phys D: Appl Phy 38(11):1824

    Article  Google Scholar 

  30. Roopas Kiran S, Sreenivasulu G, Murthy VRK, Subramanian V, Murty BS (2012) Effect of grain size on the microwave dielectric characteristics of high-energy ball-milled zinc magnesium titanate ceramics. J Am Ceram Soc 95(6):1973–1979

    Article  Google Scholar 

  31. El-Mallah HM (2012) AC electrical conductivity and dielectric properties of perovskite (Pb, Ca) TiO3 ceramic. Acta Phys Pol—Ser A Gen Phys 122(1):174

    Article  Google Scholar 

  32. Nayak B, Misra PK (2020) Exploration of the structural and dielectric characteristics of a potent hydroxyapatite coated gallium bioceramics for the forthcoming biomedical and orthopedic applications. Mater Chem Phys 239:121967

    Article  Google Scholar 

  33. Jonscher AK (1977) The universal dielectric response. Nature 267(5613):673–679

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, A., Sahoo, S. (2024). Study of Dielectric Characteristics of Forsterite-Based Medical Implant. In: Gabbouj, M., Pandey, S.S., Garg, H.K., Hazra, R. (eds) Emerging Electronics and Automation. E2A 2022. Lecture Notes in Electrical Engineering, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-99-6855-8_44

Download citation

Publish with us

Policies and ethics