Skip to main content

A Study on Influence Maximization in Complex Networks

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics (FICTA 2023)


Influence maximization deals with finding the most influential subset from a given complex network. It is a research problem that can be resourceful for various markets, for instance, the advertising market. This study reviews the dominant algorithms in the field of influence propagation and maximization from a decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66 (2001)

    Google Scholar 

  2. Kempe, D., Kleinberg, J., Tardos,É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  3. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: A data-based approach to social influence maximization. arXiv preprint arXiv:1109.6886 (2011)

  4. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807–816 (2009)

    Google Scholar 

  5. Li, F.-H., Li, C.-T., Shan, M.-K.: Labeled influence maximization in social networks for target marketing. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, pp. 560–563. IEEE (2011)

    Google Scholar 

  6. Chen, W., Lin, T., Yang, C.: Real-time topic-aware influence maximization using preprocessing. Comput. Soc. Netw. 3(1), 1–19 (2016)

    Google Scholar 

  7. Qian, C., Shi, J.-C., Yu, Y., Tang, K., Zhou, Z.-H.: Subset selection under noise. Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  8. Wang, F., Zhu, Z., Liu, P., Wang, P.: Influence maximization in social network considering memory effect and social reinforcement effect. Future Internet 11(4), 95 (2019)

    Google Scholar 

  9. Azaouzi, M., Mnasri, W., Romdhane, L.B.: New trends in influence maximization models. Comput. Sci. Rev. 40, 100393 (2021)

    Google Scholar 

  10. Zareie, A., Sakellariou, R.: Influence maximization in social networks: a survey of behaviour-aware methods. arXiv preprint arXiv:2108.03438 (2021)

  11. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Internet and Network Economics: Third International Workshop, WINE 2007, San Diego, CA, USA, 12–14 Dec 2007. Proceedings, vol. 3, pp. 306–311. Springer (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Akhila Susarla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mani Saketh, C.V.S.S., Pranay, K., Susarla, A., Ravi Ram Karthik, D., Jaya Lakshmi, T., Nandini, Y.V. (2023). A Study on Influence Maximization in Complex Networks. In: Bhateja, V., Carroll, F., Tavares, J.M.R.S., Sengar, S.S., Peer, P. (eds) Intelligent Data Engineering and Analytics. FICTA 2023. Smart Innovation, Systems and Technologies, vol 371. Springer, Singapore.

Download citation

Publish with us

Policies and ethics