Skip to main content

Modeling of Solar Ammonia Production Using ASPEN Plus

  • Conference paper
  • First Online:
Proceedings from the International Conference on Hydro and Renewable Energy (ICHRE 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 391))

Included in the following conference series:

  • 79 Accesses

Abstract

A steady-state model of green ammonia production using hydrogen produced from Polymer Electrolyte Membrane (PEM) electrolysis has been developed using ASPEN Plus Simulation software. Since the ASPEN plus does not offer the facility to directly model electrolysis cells, Aspen Custom Modeler (ACM) is used to develop the PEM stack. Stack is based on semi-empirical equations describing cell voltage and water transport across the membrane. The power requirement for electrolysis is expected to come from solar energy. This model of the PEM electrolyzer is integrated with the ammonia production model in a single flowsheet. With a power input of 4.25 kW, the PEM stack with 26 cells produced 0.048 kmol/h of H2. The corresponding ammonia production utilizing the conventional Haber–Bosch reactor was simulated to be 0.026 kmol/h. Such a model is expected to assist in the future design and scale-up of green ammonia processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

H0:

Change in enthalpy at STP conditions

Vcell:

Cell voltage

Vopen circuit:

Open circuit voltage

Vact_anode:

Activation overpotential at anode

Vact_cathode:

Activation overpotential at cathode

ΔG:

Change in Gibbs free energy

ΔG*:

Gibbs free energy change at any temperature but standard pressure

\(P_{{{\text{H}}_{2} }}\):

Partial pressure of H2

\(P_{{{\text{O}}_{2} }}\):

Partial pressure of O2

\(\alpha_{{{\text{H}}_{2} {\text{O}}}}\):

Activity coefficient of water (~ 1)

Top:

Operating temperature

i0,electrode:

Exchange current density, corresponding to the current density for the reversible semi-reaction at anode or cathode

ielectrode:

Current density in the stack

αelectrode:

Anode or cathode charge transfer coefficient

n:

Number of electrons transferred in a half reaction

F:

Faraday number

iuseful:

Useful current density (found using faraday’s efficiency)

icell:

Current density in cell (Istack/Acell)

tan:

Thickness of anode

tcat:

Thickness of cathode

ρan:

Electrical resistivity of anode material

ρcat:

Electrical resistivity of cathode material

Acell:

Cell area

tmem:

Membrane thickness

σmem:

Conductivity of membrane

λ:

Membrane humidification

Ncell:

Number of cells in stack

Neo:

Molar flow rate of water transported due to eo drag

nd:

Electro-osmotic drag coefficient

NDiff:

Molar flow rate of water transported due to diffusivity drag

\(D_{{{\text{H}}_{2} {\text{O}},{\text{effective}}}}\):

Effective diffusivity

Wstack:

Power consumption of electrolyzer stack

σmem:

Membrane ionic conductivity

Ɛ:

Porosity of membrane

R:

Universal gas constant

References

  1. Abdin Z, Webb C, Gray EM (2015) Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. Int J Hydrogen Energy 40(39):13243–13257

    Article  Google Scholar 

  2. Andersson J, Lundgren J (2014) Techno-economic analysis of ammonia production via integrated biomass gasification. Appl Energy 130:484–490

    Article  Google Scholar 

  3. Appl M (1999) Ammonia: principles & industrial practice

    Google Scholar 

  4. Arora P, Hoadley AF, Mahajani SM, Ganesh A (2016) Small-scale ammonia production from biomass: a techno-enviro-economic perspective. Ind Eng Chem Res 55(22):6422–6434

    Article  Google Scholar 

  5. Awasthi A, Scott K, Basu S (2011) Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production. Int J Hydrogen Energy 36(22):14779–14786

    Article  Google Scholar 

  6. Bhosale AC, Mane SR, Singdeo D, Ghosh P (2017) Modeling and experimental validation of a unitized regenerative fuel cell in electrolysis mode of operation. Energy 121:256–263

    Article  Google Scholar 

  7. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934

    Article  Google Scholar 

  8. Colbertaldo P, Aláez SLG, Campanari S (2017) Zero-dimensional dynamic modeling of PEM electrolyzers. Energy Procedia 142:1468–1473

    Article  Google Scholar 

  9. D’Angelo SC, Cobo S, Tulus V, Nabera A, Martín AJ, Pérez-Ramírez J, Guillén-Gosálbez G (2021) Planetary boundaries analysis of low-carbon ammonia production routes. ACS Sustain Chem Eng 9(29):9740–9749

    Article  Google Scholar 

  10. Dutta S, Shimpalee S, Van Zee J (2001) Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. Int J Heat Mass Transf 44(11):2029–2042

    Article  Google Scholar 

  11. Falcão D, Pinto A (2020) A review on PEM electrolyzer modelling: guidelines for beginners. J Clean Prod 261:121184

    Article  Google Scholar 

  12. García-Valverde R, Espinosa N, Urbina A (2012) Simple PEM water electrolyser model and experimental validation. Int J Hydrogen Energy 37(2):1927–1938

    Article  Google Scholar 

  13. Görgün H (2006) Dynamic modelling of a proton exchange membrane (PEM) electrolyzer. Int J Hydrogen Energy 31(1):29–38

    Article  Google Scholar 

  14. Grigoriev S, Porembsky V, Fateev V (2006) Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrogen Energy 31(2):171–175

    Article  Google Scholar 

  15. Han B, Steen SM III, Mo J, Zhang F-Y (2015) Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy. Int J Hydrogen Energy 40(22):7006–7016

    Article  Google Scholar 

  16. Lebbal M, Lecœuche S (2009) Identification and monitoring of a PEM electrolyser based on dynamical modelling. Int J Hydrogen Energy 34(14):5992–5999

    Article  Google Scholar 

  17. Liu X, Elgowainy A, Wang M (2020) Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chem 22(17):5751–5761

    Article  Google Scholar 

  18. Marangio F, Santarelli M, Calì M (2009) Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. Int J Hydrogen Energy 34(3):1143–1158

    Article  Google Scholar 

  19. Medina P, Santarelli M (2010) Analysis of water transport in a high pressure PEM electrolyzer. Int J Hydrogen Energy 35(11):5173–5186

    Article  Google Scholar 

  20. Santarelli M, Torchio M, management. (2007) Experimental analysis of the effects of the operating variables on the performance of a single PEMFC. Energy Conv 48(1):40–51

    Article  Google Scholar 

  21. SUSlick KSJJW, York SN (1998) Kirk-Othmer encyclopedia of chemical technology, vol 26, pp 517–541

    Google Scholar 

  22. Tijani AS, Kamarudin NAB, Mazlan FAB (2018) Investigation of the effect of charge transfer coefficient (CTC) on the operating voltage of polymer electrolyte membrane (PEM) electrolyzer. Int J Hydrogen Energy 43(19):9119–9132

    Article  Google Scholar 

  23. Yigit T, Selamet OF (2016) Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system. Int J Hydrogen Energy 41(32):13901–13914

    Article  Google Scholar 

  24. Zhang H, Wang L, Maréchal F, Desideri U (2020) Techno-economic comparison of green ammonia production processes. Appl Energy 259:114135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratham Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Natu, I., Arora, P. (2024). Modeling of Solar Ammonia Production Using ASPEN Plus. In: Hodge, BM., Prajapati, S.K. (eds) Proceedings from the International Conference on Hydro and Renewable Energy . ICHRE 2022. Lecture Notes in Civil Engineering, vol 391. Springer, Singapore. https://doi.org/10.1007/978-981-99-6616-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6616-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6615-8

  • Online ISBN: 978-981-99-6616-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics