Abstract
Targeted drug delivery systems have evolved over the years to improve the therapeutic efficacy of drugs and reduce their side effects. In this context, a range of nanoscale delivery vehicles like liposomes have been developed. Liposomes are spherical particles made up of phospholipids, fatty acid esters, and fat alcohol ethers of phosphatides. They consist of a hydrophilic core and an amphipathic outer lipid bilayer. The advantages of using liposomes for drug delivery include biocompability, feasibility to deliver hydrophilic and hydrophobic drugs, low toxicity and wrapping lipids around inorganic and polymeric nanoparticles to form supported monolayers or bilayers for enhanced permeability and retention effect. Different methods of synthesis of liposomes have been developed over the years and they are based on a common principle of hydration of lipids dissolved in organic solvents. The various properties that play a decisive role in efficient drug delivery from liposomes include size, charge and fluidity of liposomes. The mechanism of drug delivery by liposomes involves either fusion of the liposome with cell membrane or by ingestion and degradation of liposomes inside the cell that leads to release of the loaded drug into the cell. Further, liposomes can be efficiently targeted by specific ligand binding. The current chapter discusses the rationale of liposome synthesis, advances in the synthesis process, current state-of-art of liposome drug delivery systems for therapeutic applications in treatment of microbial diseases and cancer, and regulations related to commercialisation of liposomes with examples like DOXIL and MYOCET.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alavi M, Hamidi M (2019) Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Personalized Therapy 34(1). https://doi.org/10.1515/dmpt-2018-0032
Alavi M, Karimi N, Safaei M (2017) Application of various types of liposomes in drug delivery systems. Adv Pharm Bull 7(1):3–9. https://doi.org/10.15171/apb.2017.002
Alhariri M, Azghani A, Omri A (2013) Liposomal antibiotics for the treatment of infectious diseases. Expert Opin Drug Deliv 10(11):1515–1532. https://doi.org/10.1517/17425247.2013.822860
AlSawaftah N, Pitt WG, Husseini GA (2021) Dual-targeting and stimuli-triggered liposomal drug delivery in cancer treatment. ACS Pharmacol Transl Sci 4(3):1028–1049. https://doi.org/10.1021/acsptsci.1c00066
Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B (2013) Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev 65(13–14):1816–1827. https://doi.org/10.1016/j.addr.2013.07.020
Antimisiaris SG, Marazioti A, Kannavou M, Natsaridis E, Gkartziou F, Kogkos G, Mourtas S (2021) Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 174:53–86. https://doi.org/10.1016/j.addr.2021.01.019
Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA (2019) Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol 10(1):11. https://doi.org/10.1186/s12645-019-0055-y
Boekhout AH, Beijnen JH, Schellens JHM (2011) Trastuzumab. Oncologist 16(6):800–810. https://doi.org/10.1634/theoncologist.2010-0035
Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(2):12. https://doi.org/10.3390/pharmaceutics9020012
Chalmers JD, van Ingen J, van der Laan R, Herrmann J-L (2021) Liposomal drug delivery to manage nontuberculous mycobacterial pulmonary disease and other chronic lung infections. Eur Respir Rev Official J Eur Respir Soc 30(161):210010. https://doi.org/10.1183/16000617.0010-2021
Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A (2016) Application of liposomes in medicine and drug delivery. Artif Cells, Nanomed Biotechnol 44(1):381–391. https://doi.org/10.3109/21691401.2014.953633
Deshmukh SK, Khan MA, Singh S, Singh AP (2021) Extracellular nanovesicles: from intercellular messengers to efficient drug delivery systems. ACS Omega 6(3):1773–1779. https://doi.org/10.1021/acsomega.0c05539
Dissanayake T, Sun X, Abbey L, Bandara N (2022) Recent advances in lipid-protein conjugate-based delivery systems in nutraceutical, drug, and gene delivery. Food Hydrocolloids Health 2:100054. https://doi.org/10.1016/j.fhfh.2022.100054
Durak S, Esmaeili Rad M, Alp Yetisgin A, Eda Sutova H, Kutlu O, Cetinel S, Zarrabi A (2020) Niosomal drug delivery systems for ocular disease—recent advances and future prospects. Nanomaterials 10(6):6. https://doi.org/10.3390/nano10061191
Elhissi A (2017) Liposomes for pulmonary drug delivery: the role of formulation and inhalation device design. Curr Pharm Des 23(3):362–372. https://doi.org/10.2174/1381612823666161116114732
Gaspar MM, Bakowsky U, Ehrhardt C (2008) Inhaled liposomes-current strategies and future challenges. J Biomed Nanotechnol 4(3):245–257. https://doi.org/10.1166/jbn.2008.334
Goyal P, Goyal K, Vijaya Kumar SG, Singh A, Katare OP, Mishra DN (2005) Liposomal drug delivery systems—clinical applications. Acta Pharm (zagreb, Croatia) 55(1):1–25
Guimarães D, Cavaco-Paulo A, Nogueira E (2021) Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 601:120571. https://doi.org/10.1016/j.ijpharm.2021.120571
Gyanani V, Haley JC, Goswami R (2021) Challenges of current anticancer treatment approaches with focus on liposomal drug delivery systems. Pharmaceuticals (basel, Switzerland) 14(9):835. https://doi.org/10.3390/ph14090835
He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W (2019) Adapting liposomes for oral drug delivery. Acta Pharm Sinica. B 9(1):36–48. https://doi.org/10.1016/j.apsb.2018.06.005
He S, Gui J, Xiong K, Chen M, Gao H, Fu Y (2022) A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnol 20(1):101. https://doi.org/10.1186/s12951-022-01307-x
Hofheinz R-D, Gnad-Vogt SU, Beyer U, Hochhaus A (2005) Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 16(7):691–707. https://doi.org/10.1097/01.cad.0000167902.53039.5a
Huang X, Caddell R, Yu B, Xu S, Theobald B, Lee LJ, Lee RJ (2010) Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer Res 30(2):463–466
Ishak RAH, Mostafa NM, Kamel AO (2017) Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery—comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv 24(1):1874–1890. https://doi.org/10.1080/10717544.2017.1410263
Islas-Weinstein L, Marquina-Castillo B, Mata-Espinosa D, Paredes-González IS, Chávez J, Balboa L, Marín Franco JL, Guerrero-Romero D, Barrios-Payan JA, Hernandez-Pando R (2021) The cholinergic system contributes to the immunopathological progression of experimental pulmonary tuberculosis. Front Immunol 11:581911. https://doi.org/10.3389/fimmu.2020.581911
Jaradat E, Weaver E, Meziane A, Lamprou D (2021) Microfluidics technology for the design and formulation of nanomedicines. Nanomaterials 11:3440. https://doi.org/10.3390/nano11123440
Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Pishabad ZS, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501. https://doi.org/10.1039/c5cs00798d
Kim J-S (2016) Liposomal drug delivery system. J Pharm Investig 46(4):387–392. https://doi.org/10.1007/s40005-016-0260-1
Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G (2021) Nanotechnology approaches for global infectious diseases. Nat Nanotechnol 16(4):4. https://doi.org/10.1038/s41565-021-00866-8
Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, van der Meel R (2021) The current landscape of nucleic acid therapeutics. Nat Nanotechnol 16(6):6. https://doi.org/10.1038/s41565-021-00898-0
Kumari P, Ghosh B, Biswas S (2016) Nanocarriers for cancer-targeted drug delivery. J Drug Target 24(3):179–191. https://doi.org/10.3109/1061186X.2015.1051049
Labiris NR, Dolovich MB (2003) Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 56(6):588–599. https://doi.org/10.1046/j.1365-2125.2003.01892.x
Lamichhane TN, Raiker RS, Jay SM (2015) Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm 12(10):3650–3657. https://doi.org/10.1021/acs.molpharmaceut.5b00364
Lamichhane N, Udayakumar TS, D’Souza WD, Simone CB, Raghavan SR, Polf J, Mahmood J (2018) Liposomes: clinical applications and potential for image-guided drug delivery. Molecules (basel, Switzerland) 23(2):288. https://doi.org/10.3390/molecules23020288
Lao J, Madani J, Puértolas T, Álvarez M, Hernández A, Pazo-Cid R, Artal Á, Antón Torres A (2013) Liposomal doxorubicin in the treatment of breast cancer patients: a review. J Drug Deliv 2013:456409. https://doi.org/10.1155/2013/456409
Large DE, Abdelmessih RG, Fink EA, Auguste DT (2021) Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 176:113851. https://doi.org/10.1016/j.addr.2021.113851
Le Meins J-F, Schatz C, Lecommandoux S, Sandre O (2013) Hybrid polymer/lipid vesicles: state of the art and future perspectives. Mater Today 16(10):397–402. https://doi.org/10.1016/j.mattod.2013.09.002
Lee Y, Thompson DH (2017) Stimuli-responsive liposomes for drug delivery. Wiley Interdisc Rev. Nanomed Nanobiotechnol 9(5). https://doi.org/10.1002/wnan.1450
Li SG, Li L (2013) Targeted therapy in HER2-positive breast cancer. Biomed Rep 1(4):499–505. https://doi.org/10.3892/br.2013.95
Li M, Du C, Guo N, Teng Y, Meng X, Sun H, Li S, Yu P, Galons H (2019) Composition design and medical application of liposomes. Eur J Med Chem 164:640–653. https://doi.org/10.1016/j.ejmech.2019.01.007
Lian T, Ho RJY (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90(6):667–680. https://doi.org/10.1002/jps.1023
Lin C, Wong BCK, Chen H, Bian Z, Zhang G, Zhang X, Kashif Riaz M, Tyagi D, Lin G, Zhang Y, Wang J, Lu A, Yang Z (2017) Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci Rep 7(1):1. https://doi.org/10.1038/s41598-017-00957-4
Liu D, He C, Wang AZ, Lin W (2013) Application of liposomal technologies for delivery of platinum analogs in oncology. Int J Nanomed 8:3309–3319. https://doi.org/10.2147/IJN.S38354
Liu P, Chen G, Zhang J (2022) A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27(4):1372. https://doi.org/10.3390/molecules27041372
Loira-Pastoriza C, Todoroff J, Vanbever R (2014) Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 75:81–91. https://doi.org/10.1016/j.addr.2014.05.017
Lombardo D, Kiselev MA (2022) Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 14(3):543. https://doi.org/10.3390/pharmaceutics14030543
Luiz H, Oliveira Pinho J, Gaspar MM (2023) Advancing medicine with lipid-based nanosystems—the successful case of liposomes. Biomedicines 11(2):2. https://doi.org/10.3390/biomedicines11020435
Maurer N, Fenske DB, Cullis PR (2001) Developments in liposomal drug delivery systems. Expert Opin Biol Ther 1(6):923–947. https://doi.org/10.1517/14712598.1.6.923
Mishra GP, Bagui M, Tamboli V, Mitra AK (2011) Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv 2011:863734. https://doi.org/10.1155/2011/863734
Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM (2019) Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int J Nanomed 14:1937–1952. https://doi.org/10.2147/IJN.S198353
Newman SP (2017) Drug delivery to the lungs: challenges and opportunities. Ther Deliv 8(8):647–661. https://doi.org/10.4155/tde-2017-0037
Nisini R, Poerio N, Mariotti S, De Santis F, Fraziano M (2018) The multirole of liposomes in therapy and prevention of infectious diseases. Front Immunol 9:155. https://doi.org/10.3389/fimmu.2018.00155
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W (2022) Liposomes: structure, composition, types, and clinical applications. Heliyon 8(5):e09394. https://doi.org/10.1016/j.heliyon.2022.e09394
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA (2018) Liposomal drug delivery systems and anticancer drugs. Molecules (basel, Switzerland) 23(4):907. https://doi.org/10.3390/molecules23040907
Patra JK, Das G, Fraceto LF, Campos EVR, del Rodriguez-Torres MP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S (2018) Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol 16(1):71. https://doi.org/10.1186/s12951-018-0392-8
Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966. https://doi.org/10.1021/acs.chemrev.5b00046
Pham D-D, Fattal E, Tsapis N (2015) Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm 478(2):517–529. https://doi.org/10.1016/j.ijpharm.2014.12.009
Pierre MBR, dos Santos Miranda Costa I (2011) Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res 303(9):607–621. https://doi.org/10.1007/s00403-011-1166-4
Pinheiro M, Lúcio M, Lima JLFC, Reis S (2011) Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (lond) 6(8):1413–1428. https://doi.org/10.2217/nnm.11.122
Ravar F, Saadat E, Gholami M, Dehghankelishadi P, Mahdavi M, Azami S, Dorkoosh FA (2016) Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Controlled Release: Official J Controlled Release Soc 229:10–22. https://doi.org/10.1016/j.jconrel.2016.03.012
Richardson ES, Pitt WG, Woodbury DJ (2007) The role of cavitation in liposome formation. Biophys J 93(12):4100–4107. https://doi.org/10.1529/biophysj.107.104042
Ritchie H, Spooner F, Roser M (2018) Causes of death. Our world in data. https://ourworldindata.org/causes-of-death
Rudokas M, Najlah M, Alhnan MA, Elhissi A (2016) Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. Med Principles Pract Int J Kuwait Univ Health Sci Centre 25 (Suppl 2):60–72. https://doi.org/10.1159/000445116
Sapra P, Allen TM (2003) Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 42(5):439–462. https://doi.org/10.1016/s0163-7827(03)00032-8
Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK (2020) Advances in liposomal drug delivery to cancer: an overview. J Drug Deliv Sci Technol 56:101549. https://doi.org/10.1016/j.jddst.2020.101549
Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3:7. https://doi.org/10.1038/s41392-017-0004-3
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:286. https://doi.org/10.3389/fphar.2015.00286
Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, Thangavelu L, Rajeshkumar S, Tambuwala M, Bakshi HA, Chellappan DK, Dua K, Satija S (2019) Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact 309:108720. https://doi.org/10.1016/j.cbi.2019.06.033
Shim G, Choi H, Lee S, Choi J, Yu YH, Park D-E, Choi Y, Kim C-W, Oh Y-K (2013) Enhanced intrapulmonary delivery of anticancer siRNA for lung cancer therapy using cationic ethylphosphocholine-based nanolipoplexes. Mol Ther 21(4):816–824. https://doi.org/10.1038/mt.2013.10
Silva R, Ferreira H, Little C, Cavaco-Paulo A (2010) Effect of ultrasound parameters for unilamellar liposome preparation. Ultrason Sonochem 17(3):628–632. https://doi.org/10.1016/j.ultsonch.2009.10.010
Silva R, Ferreira H, Cavaco-Paulo A (2011) Sonoproduction of liposomes and protein particles as templates for delivery purposes. Biomacromol 12(10):3353–3368. https://doi.org/10.1021/bm200658b
Singh C, Koduri LVSK, Singh A, Suresh S (2015) Novel potential for optimization of antitubercular therapy: pulmonary delivery of rifampicin lipospheres. Asian J Pharm Sci 10(6):549–562. https://doi.org/10.1016/j.ajps.2015.08.003
Slingerland M, Guchelaar H-J, Gelderblom H (2012) Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discovery Today 17(3–4):160–166. https://doi.org/10.1016/j.drudis.2011.09.015
Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, Jones A (2010) Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer 10(1):337. https://doi.org/10.1186/1471-2407-10-337
Šturm L, Poklar Ulrih N (2021) Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols. Int J Mol Sci 22(12):6547. https://doi.org/10.3390/ijms22126547
Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x
Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Invest 2(1):2–11. https://doi.org/10.4103/2230-973X.96920
Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13(11):11. https://doi.org/10.1038/nrd4333
Willis L, Hayes D, Mansour HM (2012) Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung 190(3):251–262. https://doi.org/10.1007/s00408-011-9360-x
Zhang C, Xu C, Gao X, Yao Q (2022) Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 12(5):2115–2132. https://doi.org/10.7150/thno.69424
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S (2021) Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduction Targeted Therapy 6(1):1. https://doi.org/10.1038/s41392-021-00572-w
Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J (2014) Nanomedicine in the management of microbial infection—overview and perspectives. Nano Today 9(4):478–498. https://doi.org/10.1016/j.nantod.2014.06.003
Zong T-X, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang C-S, Liu S-K (2022) Recent advances in antimicrobial nano-drug delivery systems. Nanomaterials 12(11):11. https://doi.org/10.3390/nano12111855
Zununi Vahed S, Salehi R, Davaran S, Sharifi S (2017) Liposome-based drug co-delivery systems in cancer cells. Mater Sci Eng C Mater Biol Appl 71:1327–1341. https://doi.org/10.1016/j.msec.2016.11.073
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Shetye, L., Sherlekar, A., Mendhulkar, V. (2023). Liposome-Based Drug Delivery—A New Therapeutic Paradigm. In: Santra, T.S., Shinde, A.U.S. (eds) Advanced Drug Delivery. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 26. Springer, Singapore. https://doi.org/10.1007/978-981-99-6564-9_2
Download citation
DOI: https://doi.org/10.1007/978-981-99-6564-9_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-6563-2
Online ISBN: 978-981-99-6564-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)