Skip to main content

Properties of Iron Oxide Nanoparticles (IONPs)

  • Chapter
  • First Online:
Theranostic Iron-Oxide Based Nanoplatforms in Oncology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 89 Accesses

Abstract

Due to their distinctive structural, optical, magnetic, electrical, mechanical, catalytic, thermal, and chemical capabilities, IONPs play a significant role in a variety of sectors. The below figure shows the most discussed properties of IONPs in this chapter. These characteristics make it potentially useful for MRI, medication delivery, gas sensors, contrast materials, and photoelectrochemical cells. In nature, iron oxide may be found in eight distinct forms. These include hematite (α-Fe2O3), maghemite (γ-Fe2O3), and magnetites (Fe3O4), akaganeite (β-FeOOH), and goethite FeOH (OH), are frequently employed in the medical sector. Different magnetic characteristics apply to each form. The most durable kind of iron oxide is hematite. Due to their biocompatibility and low toxicity, IONPs, particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are the ideal materials for biomedical applications.

In vivo, anti-tumor efficacy was also shown with magnetosomes, which are iron oxide nanoparticles produced by magnetotactic bacteria, while the bulk of natural metallic NP's anti-tumor activity was evaluated in vitro. The use of alternating magnetic fields while repeatedly heating intracranial GBM mice tumors after the introduction of magnetosomes causes complete tumor eradication.

By regulating their physical and chemical characteristics, IONP design plays a significant role in biological applications. The size, shape, structure, and biocompatibility of NPs are the main considerations in the production of IONPs for medical applications.

Abstract’s hierarchical chart of SPIONs’ properties (discussed in depth in this chapter)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abenojar EC, Wickramasinghe S, Bas-Concepcion J, Samia ACS (2016) Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog Nat Sci Mater Intr 26(5):440–448

    Article  Google Scholar 

  • Ahmadi N, Poursalehi R, Kirilyuk A, Moravvej-Farshi MK (2019) Effect of gold plasmonic shell on nonlinear optical characteristics and structure of iron based nanoparticles. Appl Surf Sci 479:114–118

    Article  ADS  Google Scholar 

  • Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1–13

    Article  Google Scholar 

  • Al-Kuhaili M, Saleem M, Durrani S (2012) Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron. J Alloy Compd 521:178–182

    Article  Google Scholar 

  • Allen M, Willits D, Mosolf J, Young M, Douglas T (2002) Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles. Adv Mater 14(21):1562–1565

    Article  Google Scholar 

  • Alphandéry E (2020) Iron oxide nanoparticles for therapeutic applications. Drug Discov Today 25(1):141–149

    Article  Google Scholar 

  • Alphandéry E (2020) Natural metallic nanoparticles for application in nano-oncology. Int J Mol Sci 21(12):4412

    Article  Google Scholar 

  • Ansari SAMK, Ficiarà E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D’Agata F (2019) Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials 12(3):465

    Article  ADS  Google Scholar 

  • Arias JL, López-Viota M, Sáez-Fernández E, Ruiz MA, Delgado ÁV (2011) Engineering of an antitumor (core/shell) magnetic nanoformulation based on the chemotherapy agent ftorafur. Colloids Surf A PhysChem Eng Asp 384(1–3):157–163

    Article  Google Scholar 

  • Bakoglidis K, Simeonidis K, Sakellari D, Stefanou G, Angelakeris M (2012) Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles. IEEE Transactions on Magnetics 48(4):1320–1323

    Article  ADS  Google Scholar 

  • Bashir A, Furqan C, Bharuth-Ram K, Kaviyarasu K, Tchokonté M, Maaza M (2019) Structural, optical and Mössbauer investigation on the biosynthesized α-Fe2O3: Study on different precursors. Phys E Low-Dimens Syst Nanostructures 111:152–157

    Article  ADS  Google Scholar 

  • Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M (1995) Stealth Me. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84(4):493–498

    Article  Google Scholar 

  • Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran MB (2016) Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Phys E Low-Dimens Syst Nanostructures 81:308–314

    Article  ADS  Google Scholar 

  • Billen A, de Cattelle A, Jochum JK, Van Bael MJ, Billen J, Seo JW, Brullot W, Koeckelberghs G, Verbiest T (2019) Novel synthesis of superparamagnetic plasmonic core-shell iron oxide-gold nanoparticles. Phys B Condens Matter 560:85–90

    Article  ADS  Google Scholar 

  • Blanco-Mantecon M, O’Grady K (2006) Interaction and size effects in magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 296(2):124–133

    Article  ADS  Google Scholar 

  • Blin T, Kakinen A, Pilkington EH, Ivask A, Ding F, Quinn JF, Whittaker MR, Ke PC, Davis TP (2016) Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol. Polym Chem 7(10):1931–1944

    Article  Google Scholar 

  • Bora DK, Braun A, Erat S, Safonova O, Graule T, Constable EC (2012) Evolution of structural properties of iron oxide nano particles during temperature treatment from 250 C–900 C: X-ray diffraction and Fe K-shell pre-edge X-ray absorption study. Curr Appl Phys 12(3):817–825

    Article  ADS  Google Scholar 

  • Bronstein LM, Shtykova EV, Malyutin A, Dyke JC, Gunn E, Gao X, Stein B, Konarev PV, Dragnea B, Svergun DI (2010) Hydrophilization of magnetic nanoparticles with modified alternating copolymers. Part 1: The influence of the grafting. J Phys Chem C 114(50):21900–21907

    Article  Google Scholar 

  • Brullot W, Valev VK, Verbiest T (2012) Magnetic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures. Nanomedicine Nanotechnol, Biol Med 8(5):559–568

    Google Scholar 

  • Champagne P-O, Westwick H, Bouthillier A, Sawan M (2018) Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review. Nanomedicine 13(11):1385–1400

    Article  Google Scholar 

  • Chatterjee J, Haik Y, Chen C-J (2003) Size dependent magnetic properties of iron oxide nanoparticles. J Magn Magn Mater 257(1):113–118

    Article  ADS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-vch Weinheim

    Google Scholar 

  • Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials 12(4):617

    Article  ADS  Google Scholar 

  • Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10(2):2436–2446

    Article  Google Scholar 

  • Espinosa A, Munoz-Noval A, García-Hernández M, Serrano A, Jiménez De La Morena J, Figuerola A, Quarta A, Pellegrino T, Wilhelm C, García M (2013) Magnetic properties of iron oxide nanoparticles prepared by seeded-growth route. J Nanoparticle Res 15:1–13

    Article  Google Scholar 

  • Estrader M, López-Ortega A, Golosovsky IV, Estradé S, Roca AG, Salazar-Alvarez G, López-Conesa L, Tobia D, Winkler E, Ardisson JD (2015) Origin of the large dispersion of magnetic properties in nanostructured oxides: Fe × O/Fe3O4 nanoparticles as a case study. Nanoscale 7(7):3002–3015

    Article  ADS  Google Scholar 

  • Gervits NE, Gippius AA, Tkachev AV, Demikhov EI, Starchikov SS, Lyubutin IS, Vasiliev AL, Chekhonin VP, Abakumov MA, Semkina AS (2019) Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents. Beilstein J Nanotechnol 10(1):1964–1972

    Article  Google Scholar 

  • Griffiths D, Bernt W, Hole P, Smith J, Malloy A, Carr B (2011) Zeta potential measurement of nanoparticles by nanoparticle tracking analysis (NTA). NSTI-Nanotech.

    Google Scholar 

  • Heinz H, Pramanik C, Heinz O, Ding Y, Mishra RK, Marchon D, Flatt RJ, Estrela-Lopis I, Llop J, Moya S (2017) Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep 72(1):1–58

    Article  ADS  Google Scholar 

  • Hemery G, Keyes AC Jr, Garaio E, Rodrigo I, Garcia JA, Plazaola F, Garanger E, Sandre O (2017) Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorg Chem 56(14):8232–8243

    Article  Google Scholar 

  • Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol/Hematol 43(1):33–56

    Article  Google Scholar 

  • Hu H, Yuan Y, Lim S, Wang CH (2020) Phase structure dependence of magnetic behaviour in iron oxide nanorods. Mater Des 185:108241

    Article  Google Scholar 

  • Huang X, Zhuang J, Chen D, Liu H, Tang F, Yan X, Meng X, Zhang L, Ren J (2009) General strategy for designing functionalized magnetic microspheres for different bioapplications. Langmuir 25(19):11657–11663

    Article  Google Scholar 

  • Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao H-J (2011) Core-shell Fe 3 O 4@ SiO 2 nanoparticles synthesized with well-dispersed hydrophilic Fe 3 O 4 seeds. Nanoscale 3(2):701–705

    Article  ADS  Google Scholar 

  • Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14(11):21266–21305

    Article  Google Scholar 

  • Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5(2):316–327

    Article  Google Scholar 

  • Javanbakht T, Laurent S, Stanicki D, David E (2020) Related physicochemical, rheological, and dielectric properties of nanocomposites of superparamagnetic iron oxide nanoparticles with polyethyleneglycol. J Appl Polym Sci 137(3):48280

    Article  Google Scholar 

  • Javidparvar A, Ramezanzadeh B, Ghasemi E (2016) Effects of surface morphology and treatment of iron oxide nanoparticles on the mechanical properties of an epoxy coating. Prog Org Coat 90:10–20

    Article  Google Scholar 

  • Kershi R, Ali F, Sayed M (2018) Influence of rare earth ion substitutions on the structural, optical, transport, dielectric, and magnetic properties of superparamagnetic iron oxide nanoparticles. J Adv Ceram 7:218–228

    Article  Google Scholar 

  • Khmara I, Strbak O, Zavisova V, Koneracka M, Kubovcikova M, Antal I, Kavecansky V, Lucanska D, Dobrota D, Kopcansky P (2019) Chitosan-stabilized iron oxide nanoparticles for magnetic resonance imaging. J Magn Magn Mater 474:319–325

    Article  ADS  Google Scholar 

  • Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862

    Article  Google Scholar 

  • Köçkar H, Karaagac O, Özel F (2019) Effects of biocompatible surfactants on structural and corresponding magnetic properties of iron oxide nanoparticles coated by hydrothermal process. J Magn Magn Mater 474:332–336

    Article  ADS  Google Scholar 

  • Krajewski M, Brzozka K, Tokarczyk M, Kowalski G, Lewinska S, Slawska-Waniewska A, Lin WS, Lin HM (2018) Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles. J Magn Magn Mater 458:346–354

    Article  ADS  Google Scholar 

  • Kumar A, Yadav K (2017) Optical properties of nanocrystallite films of α-Fe2O3 and α-Fe2− xCrxO3 (0.0⩽ x⩽ 0.9) deposited on glass substrates. Materials Research Express 4(7):075003

    Article  ADS  Google Scholar 

  • Leng J, Yu Z, Xue W, Zhang T, Jiang Y, Zhang J, Zhang D (2010) Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition. J Appl Phys 108(7):073109

    Article  ADS  Google Scholar 

  • Li L, Mak K, Leung CW, Chan K, Chan W, Zhong W, Pong P (2013) Effect of synthesis conditions on the properties of citric-acid coated iron oxide nanoparticles. Microelectron Eng 110:329–334

    Article  Google Scholar 

  • Ma J, Jing Z, Wu K, Cheng M, Wu Y (2019) A biocompatible diatomite-based material with yeast implantation for dye adsorption. Mater Res Express 6(9):095525

    Article  ADS  Google Scholar 

  • Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5(9):7263–7276

    Article  Google Scholar 

  • Mathevula L, Noto L, Mothudi BM, Chithambo M, Dhlamini M (2017) Structural and optical properties of sol-gel derived α-Fe2O3 nanoparticles. J Lumin 192:879–887

    Article  Google Scholar 

  • Milkovič O, Gamcová J, Sopko M, Škorvánek I (2017) Structure and magnetic properties of iron/iron-oxide nanoparticles prepared by precipitation from solid state solution. Acta Physica Polonica A 131(4):747–749

    Article  ADS  Google Scholar 

  • Patsula V, Moskvin M, Dutz S, Horák D (2016) Size-dependent magnetic properties of iron oxide nanoparticles. J Phys Chem Solids 88:24–30

    Article  ADS  Google Scholar 

  • Raja K, Jaculine MM, Jose M, Verma S, Prince A, Ilangovan K, Sethusankar K, Das SJ (2015) Sol–gel synthesis and characterization of α-Fe2O3 nanoparticles. Superlattices Microstruct 86:306–312

    Article  ADS  Google Scholar 

  • Ran S (2004) Gravity probe B: Exploring Einstein's universe with gyroscopes. NASA: 26

    Google Scholar 

  • Rivero M, Hu J, Jaque D, Canete M, Sanchez-Marcos J, Munoz-Bonilla A (2018) Compositional tuning of light-to-heat conversion efficiency and of optical properties of superparamagnetic iron oxide nanoparticles. J Phys Chem C 122(28):16389–16396

    Article  Google Scholar 

  • Roca AG, Gutiérrez L, Gavilán H, Brollo MEF, Veintemillas-Verdaguer S, del Puerto Morales M (2019) Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 138:68–104

    Article  Google Scholar 

  • Ruan C, Wang J, Gao M, Zhao G-M (2016) The influence of structural size on thermal stability in single crystalline hematite uniform nano/micro-cubes. Mater Chem Phys 183:158–164

    Article  Google Scholar 

  • Sakellari D, Brintakis K, Kostopoulou A, Myrovali E, Simeonidis K, Lappas A, Angelakeris M (2016) Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators. Mater Sci Eng C 58:187–193

    Article  Google Scholar 

  • Samrot AV, Sahithya CS, Selvarani J, Purayil SK, Ponnaiah P (2021) A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr Res Green Sustain Chem 4:100042

    Article  Google Scholar 

  • Sangaiya P, Jayaprakash R (2018) A review on iron oxide nanoparticles and their biomedical applications. J Supercond Nov Magn 31:3397–3413

    Article  Google Scholar 

  • Sayed FN, Polshettiwar V (2015) Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides. Sci Rep 5(1):9733

    Article  ADS  Google Scholar 

  • Shaterabadi Z, Nabiyouni G, Soleymani M (2017) High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Mater Sci Eng C 75:947–956

    Article  Google Scholar 

  • Shi D, Sadat M, Dunn AW, Mast DB (2015) Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 7(18):8209–8232

    Article  ADS  Google Scholar 

  • Shokrollahi H (2013) Contrast agents for MRI. Mater Sci Eng C 33(8):4485–4497

    Article  Google Scholar 

  • Soares PI, Machado D, Laia C, Pereira LC, Coutinho JT, Ferreira IM, Novo CM, Borges JP (2016) Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Carbohydr Polym 149:382–390

    Article  Google Scholar 

  • Sodipo BK, Abdul Aziz A (2013) Sonochemical synthesis of silica coated super paramagnetic iron oxide nanoparticles. Trans Tech Publ, Materials Science Forum

    Book  Google Scholar 

  • Sodipo BK, Aziz AA (2016) Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. J Magn Magn Mater 416:275–291

    Article  ADS  Google Scholar 

  • Sood A, Arora V, Shah J, Kotnala R, Jain TK (2017) Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater Sci Eng C 80:274–281

    Article  Google Scholar 

  • Sun Y-P, Li X-Q, Cao J, Zhang W-X, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Advances in colloid and interface science 120(1–3):47–56

    Article  Google Scholar 

  • Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45

    Article  Google Scholar 

  • Tong S, Quinto CA, Zhang L, Mohindra P, Bao G (2017) Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano 11(7):6808–6816

    Article  Google Scholar 

  • Torrent J, Barrón V (2002) Diffuse reflectance spectroscopy of iron oxides. Encyclopedia of surface and Colloid Science 1:1438–1446

    Google Scholar 

  • Wahajuddin N, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine:3445–3471

    Google Scholar 

  • Wu W, Jiang CZ, Roy VA (2016) Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8(47):19421–19474

    Article  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Article  Google Scholar 

  • Xia T, Wang J, Wu C, Meng F, Shi Z, Lian J, Feng J, Meng J (2012) Novel complex-coprecipitation route to form high quality triethanolamine-coated Fe 3 O 4 nanocrystals: their high saturation magnetizations and excellent water treatment properties. CrystEngComm 14(18):5741–5744

    Article  Google Scholar 

  • Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw B-S, Cai Q, Sun X, Wang X, Zhao L (2018) Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8(12):3284

    Article  Google Scholar 

  • Zysler R, Fiorani D, Testa A (2001) Investigation of magnetic properties of interacting Fe2O3 nanoparticles. J Magn Magn Mater 224(1):5–11

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Nabil Savari .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savari, MN., Jabali, A. (2023). Properties of Iron Oxide Nanoparticles (IONPs). In: Theranostic Iron-Oxide Based Nanoplatforms in Oncology. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6507-6_4

Download citation

Publish with us

Policies and ethics