Skip to main content

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 68 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andujar P, Simon-Deckers A, Galateau-Sallé F, Fayard B, Beaune G, Clin B, Billon-Galland M-A, Durupthy O, Pairon J-C, Doucet J (2014) Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Part Fibre Toxicol 11(1):1–13

    Article  Google Scholar 

  • Bai Q, Wang J, Xing S, Ma Y, Bao X (2020) Crystal orientation and crystal structure of paramagnetic α-Al under a pulsed electromagnetic field. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Ban M, Langonné I, Huguet N, Guichard Y, Goutet M (2013) Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicol Lett 216(1):31–39

    Article  Google Scholar 

  • Barrett T, Choyke PL, Kobayashi H (2006) Imaging of the lymphatic system: new horizons. Contrast Media Mol Imaging 1(6):230–245

    Article  Google Scholar 

  • Beaver LM, Stemmy EJ, Schwartz AM, Damsker JM, Constant SL, Ceryak SM, Patierno SR (2009) Lung inflammation, injury, and proliferative response after repetitive particulate hexavalent chromium exposure. Environ Health Perspect 117(12):1896–1902

    Article  Google Scholar 

  • Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691

    Article  ADS  Google Scholar 

  • Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6:1–11

    Article  Google Scholar 

  • Blanco-Mantecon M, O’Grady K (2006) Interaction and size effects in magnetic nanoparticles. J Magn Magn Mater 296(2):124–133

    Article  ADS  Google Scholar 

  • Boyd J, Doll R, Faulds J, Leiper J (1970) Cancer of the lung in iron ore (haematite) miners. Occup Environ Med 27(2):97–105

    Article  Google Scholar 

  • Calero M, Gutiérrez L, Salas G, Luengo Y, Lázaro A, Acedo P, Morales MP, Miranda R, Villanueva A (2014) Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnol Biol Med 10(4):733–743

    Google Scholar 

  • Campbell JA (1940) Effects of precipitated silica and of iron oxide on the incidence of primary lung tumours in mice. BMJ 2(4156):275

    Article  Google Scholar 

  • Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012

    Article  Google Scholar 

  • Collard KJ (2009) Iron homeostasis in the neonate. Pediatrics 123(4):1208–1216

    Article  Google Scholar 

  • de Oliveira GMT, Kist LW, Pereira TCB, Bortolotto JW, Paquete FL, de Oliveira EMN, Leite CE, Bonan CD, de Souza Basso NR, Papaleo RM (2014) Transient modulation of acetylcholinesterase activity caused by exposure to dextran-coated iron oxide nanoparticles in brain of adult zebrafish. Comp Biochem Physiol C: Toxicol Pharmacol 162:77–84

    Google Scholar 

  • Deen WM, Lazzara MJ, Myers BD (2001) Structural determinants of glomerular permeability. Am J Physiol-Ren Physiol 281(4):F579–F596

    Article  Google Scholar 

  • Donaldson K, Schinwald A, Murphy F, Cho W-S, Duffin R, Tran L, Poland C (2013) The biologically effective dose in inhalation nanotoxicology. Acc Chem Res 46(3):723–732

    Article  Google Scholar 

  • Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhalation Toxicol 19(10):849–856

    Article  Google Scholar 

  • Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials 12(4):617

    Article  ADS  Google Scholar 

  • Ferreira LFP, de Oliveira TM, Toma SH, Toyama MM, Araki K, Avanzi LH (2020) Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with lipase Candida antarctica A for biodiesel synthesis. RSC Adv 10(63):38490–38496

    Article  ADS  Google Scholar 

  • Freyria FS, Bonelli B, Tomatis M, Ghiazza M, Gazzano E, Ghigo D, Garrone E, Fubini B (2012) Hematite nanoparticles larger than 90 nm show no sign of toxicity in terms of lactate dehydrogenase release, nitric oxide generation, apoptosis, and comet assay in murine alveolar macrophages and human lung epithelial cells. Chem Res Toxicol 25(4):850–861

    Article  Google Scholar 

  • Galaris D, Pantopoulos K (2008) Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 45(1):1–23

    Article  Google Scholar 

  • Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci 3(1):66–73

    Article  Google Scholar 

  • Gustafsson Å, Bergström U, Ågren L, Österlund L, Sandström T, Bucht A (2015) Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles. Toxicol Appl Pharmacol 288(1):1–11

    Article  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, New York, NY

    Book  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711

    Article  Google Scholar 

  • Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J (2009) Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short-and long-term post-instillation results. Toxicology 264(1–2):110–118

    Article  Google Scholar 

  • Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW, Wang W, Pounds JG, Thrall BD (2013) Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano 7(8):6997–7010

    Article  Google Scholar 

  • Kornberg TG, Stueckle TA, Antonini JM, Rojanasakul Y, Castranova V, Yang Y, Rojanasakul LW (2017) Potential toxicity and underlying mechanisms associated with pulmonary exposure to iron oxide nanoparticles: conflicting literature and unclear risk. Nanomaterials 7(10):307

    Article  Google Scholar 

  • Laskar A, Eilertsen J, Li W, Yuan X-M (2013) SPION primes THP1 derived M2 macrophages towards M1-like macrophages. Biochem Biophys Res Commun 441(4):737–742

    Article  Google Scholar 

  • Lee MJ-E, Veiseh O, Bhattarai N, Sun C, Hansen SJ, Ditzler S, Knoblaugh S, Lee D, Ellenbogen R, Zhang M (2010) Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method. PLoS ONE 5(3):e9536

    Article  ADS  Google Scholar 

  • Lee JH, Ju JE, Kim BI, Pak PJ, Choi EK, Lee HS, Chung N (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33(12):2759–2766

    Article  Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717

    Google Scholar 

  • Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280(4):C719–C741

    Article  Google Scholar 

  • Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, Castranova V (2012) Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol 262(3):255–264

    Article  Google Scholar 

  • Mahmoudi M, Simchi A, Milani A, Stroeve P (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336(2):510–518

    Article  ADS  Google Scholar 

  • Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE 9(1):e85835

    Article  ADS  Google Scholar 

  • Murray AR, Kisin E, Inman A, Young S-H, Muhammed M, Burks T, Uheida A, Tkach A, Waltz M, Castranova V (2013) Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro. Cell Biochem Biophys 67:461–476

    Article  Google Scholar 

  • Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C, Dinda AK (2010) Retracted Article: concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983–989

    Google Scholar 

  • Nel A (2005) Air pollution-related illness: effects of particles. Science 308(5723):804–806

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Google Scholar 

  • Nelson NR, Port JD, Pandey MK (2020) Use of superparamagnetic iron oxide nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: an educational review. J Nanotheranostics 1(1):105–135

    Article  Google Scholar 

  • Oh N, Park J-H (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 9(sup1):51–63

    Google Scholar 

  • Ohlson M, Sorensson J, Haraldsson B (2001) A gel-membrane model of glomerular charge and size selectivity in series. Am J Physiol-Ren Physiol 280(3):F396–F405

    Article  Google Scholar 

  • Park E-J, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 275(1–3):65–71

    Article  Google Scholar 

  • Park E-J, Umh HN, Choi D-H, Cho MH, Choi W, Kim S-W, Kim Y, Kim J-H (2014) Magnetite-and maghemite-induced different toxicity in murine alveolar macrophage cells. Arch Toxicol 88:1607–1618

    Article  Google Scholar 

  • Park E-J, Oh SY, Lee SJ, Lee K, Kim Y, Lee B-S, Kim JS (2015) Chronic pulmonary accumulation of iron oxide nanoparticles induced Th1-type immune response stimulating the function of antigen-presenting cells. Environ Res 143:138–147

    Article  Google Scholar 

  • Patel D, Kell A, Simard B, Deng J, Xiang B, Lin H-Y, Gruwel M, Tian G (2010) Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials 31(10):2866–2873

    Article  Google Scholar 

  • Patil RM, Thorat ND, Shete PB, Bedge PA, Gavde S, Joshi MG, Tofail SA, Bohara RA (2018) Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep 13:63–72

    Google Scholar 

  • Prabhakar P, Reddy UA, Singh S, Balasubramanyam A, Rahman M, Indu Kumari S, Agawane SB, Murty U, Grover P, Mahboob M (2012) Retracted: oxidative stress induced by aluminum oxide nanomaterials after acute oral treatment in Wistar rats. J Appl Toxicol 32(6):436–445

    Article  Google Scholar 

  • Reddy UA, Prabhakar P, Mahboob M (2017) Biomarkers of oxidative stress for in vivo assessment of toxicological effects of iron oxide nanoparticles. Saudi J Biol Sci 24(6):1172–1180

    Article  Google Scholar 

  • Risom L, Møller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res/Fundam Mol Mech Mutagen 592(1–2):119–137

    Article  Google Scholar 

  • Sadeghi L, Espanani H (2015) Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl Lek Listy 116(6):373–378

    Google Scholar 

  • Samrot AV, Justin C, Padmanaban S, Burman U (2017) A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae. Appl Nanosci 7:17–23

    Article  ADS  Google Scholar 

  • Samrot AV, Shobana N, Durga Sruthi P, Sahithya CS (2018) Utilization of chitosan-coated superparamagnetic iron oxide nanoparticles for chromium removal. Appl Water Sci 8:1–9

    Article  Google Scholar 

  • Samrot AV, Sahithya CS, Selvarani AJ, Pachiyappan S, Kumar SS (2019) Surface-engineered super-paramagnetic iron oxide nanoparticles for chromium removal. Int J Nanomedicine 14:8105–8119

    Google Scholar 

  • Samrot AV, SaiPriya C, Selvarani J, PJ JC, Lavanya Y, Soundarya P, RB SP, Sangeetha P, Varghese RJ (2020) A study on influence of superparamagnetic iron oxide nanoparticles (SPIONs) on green gram (Vigna radiata L.) and earthworm (Eudrilus eugeniae L.). Mater Res Express 7(5):055002

    Google Scholar 

  • Shen C-C, Liang H-J, Wang C-C, Liao M-H, Jan T-R (2012) Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine 7:2729–2737

    Google Scholar 

  • Soenen SJ, De Cuyper M (2009) Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol Imaging 4(5):207–219

    Article  Google Scholar 

  • Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  Google Scholar 

  • Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy BP, Reddy NP (2012) Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol 31(11):1113–1131

    Article  Google Scholar 

  • Stolnik S, Illum L, Davis S (2012) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 64:290–301

    Article  Google Scholar 

  • Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, Pilgrimm H, Grune T (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radical Biol Med 36(8):976–984

    Article  Google Scholar 

  • Suciu M, Ionescu CM, Ciorita A, Tripon SC, Nica D, Al-Salami H, Barbu-Tudoran L (2020) Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. Beilstein J Nanotechnol 11(1):1092–1109

    Article  Google Scholar 

  • Szalay B, Tátrai E, Nyírő G, Vezér T, Dura G (2012) Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J Appl Toxicol 32(6):446–453

    Article  Google Scholar 

  • Theil EC, Matzapetakis M, Liu X (2006) Ferritins: iron/oxygen biominerals in protein nanocages. J Biol Inorg Chem 11(7):803–810

    Article  Google Scholar 

  • Totsuka Y, Ishino K, Kato T, Goto S, Tada Y, Nakae D, Watanabe M, Wakabayashi K (2014) Magnetite nanoparticles induce genotoxicity in the lungs of mice via inflammatory response. Nanomaterials 4(1):175–188

    Article  Google Scholar 

  • Van Den Bos EJ, Wagner A, Mahrholdt H, Thompson RB, Morimoto Y, Sutton BS, Judd RM, Taylor DA (2003) Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplant 12(7):743–756

    Article  Google Scholar 

  • Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS (2007) Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4(1):1–18

    Article  Google Scholar 

  • Villacis RA, José Filho S, Pina B, Azevedo RB, Pic-Taylor A, Mazzeu JF, Grisolia CK (2017) Integrated assessment of toxic effects of maghemite (γ-Fe2O3) nanoparticles in zebrafish. Aquat Toxicol 191:219–225

    Article  Google Scholar 

  • Waddington DE, Boele T, Maschmeyer R, Kuncic Z, Rosen MS (2020) High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles. Sci Adv 6(29):eabb0998

    Google Scholar 

  • Wahajuddin n, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    Google Scholar 

  • Wang L, Wang L, Ding W, Zhang F (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10(12):8617–8624

    Article  Google Scholar 

  • Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P (2014) High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8(3):2118–2133

    Article  Google Scholar 

  • Xiao GG, Wang M, Li N, Loo JA, Nel AE (2003) Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem 278(50):50781–50790

    Article  Google Scholar 

  • Zhu M-T, Feng W-Y, Wang Y, Wang B, Wang M, Ouyang H, Zhao Y-L, Chai Z-F (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107(2):342–351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Nabil Savari .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savari, MN., Jabali, A. (2023). Cytotoxicity/Toxicity. In: Theranostic Iron-Oxide Based Nanoplatforms in Oncology. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6507-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6507-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6506-9

  • Online ISBN: 978-981-99-6507-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics