Skip to main content

Electric Fish-Inspired Proximity and Pressure Sensing Electronic Skin

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14271))

Included in the following conference series:

  • 985 Accesses

Abstract

In the field of human-robot interaction, there is a growing demand for high-sensitivity proximity and pressure perception in sensor design. However, current sensing solutions often rely on the combination of several sensing principles, which presents challenges in signal acquisition, flexibility, and array integration. To overcome these challenges, we propose a flexible array of electronic skins, inspired by the electric field sensing mechanism in electric fish, capable of proximity and pressure sensing. The electronic skin consists of several key components, including an elastic layer, emitting electrodes, receiving electrodes, and a dielectric layer. By exploiting this simple yet effective our electronic skin is capable of generating electric fields through the emitting electrodes and detecting electric field disturbances through the receiving electrodes. This design enables simultaneous bimodal perception of proximity and pressure, allowing for a comprehensive understanding of the environment. One of the main advantages of our approach is its simplicity. By leveraging the electric fields as the sensing modality, we eliminate the need for complex combinations of multiple sensors. This not only simplifies the overall system design, but also reduces manufacturing cost and enhances scalability. Additionally, the use of electric fields enables real-time and accurate detection of both object proximity and applied pressure on the robot, leading to improved environmental awareness. To demonstrate the feasibility and effectiveness of our electronic skin, we conducted experiments on a robotic arm. The results of these experiments demonstrate the successful implementation of basic human-robot interactions using our proposed technique. This validation further emphasizes the potential and practicality of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 32(12), 2289–2305 (2020)

    Google Scholar 

  2. Jin, J., Wang, S., Wang, Y., et al.: Progress on flexible tactile sensors in robotic applications on objects properties recognition, manipulation and human-machine interactions. Soft Sci. (2023)

    Google Scholar 

  3. Navarro, S.E., Muhlbacher-Karrer, S., Alagi, H., et al.: Proximity perception in human-centered robotics: a survey on sensing systems and applications. IEEE Trans. Robot. 38(3), 1599–1620 (2022)

    Article  Google Scholar 

  4. Li, G., Liu, S., Zhu, R., et al.: Multifunctional electronic skins enable robots to safely and dexterously interact with human. Adv. Sci. 9(11), 2104969 (2022)

    Article  Google Scholar 

  5. Ge, C., Wang, Z., Zhang, J., et al.: A capacitive and piezoresistive hybrid sensor for long-distance proximity and wide-range force detection in human–robot collabo-ration. Adv. Intell. Syst. 2100213 (2022)

    Google Scholar 

  6. Liu, W., Duo, Y., Liu, J., et al.: Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat. Commun. 13(1), 5030 (2022)

    Article  Google Scholar 

  7. Yu, Y., Li, J., Solomon, S.A., et al.: All-printed soft human-machine interface for robotic physi-cochemical sensing. Sci. Robot. 7(67), 0495 (2022)

    Article  Google Scholar 

  8. Guo, Z.H., Wang, H.L., Shao, J., et al.: Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci. Adv. 8(21), 5201 (2022)

    Article  Google Scholar 

  9. Gottwald, M., Herzog, H., Von Der Emde, G., et al.: A bio-inspired electric camera for short-range object inspection in murky waters. Bioinspir. Biomim. 14(3), 035002 (2019)

    Article  Google Scholar 

  10. Yoo, Y., Choi, B.D.: Readout circuits for capacitive sensors. Micromachines 12(8), 960 (2021)

    Article  Google Scholar 

  11. Von Der Emde, G., Bousack, H., Huck, C., et al.: Electric fish as natural models for technical sensor systems. Bioeng. Bioinspired Syst. 73650B, 102–112 (2009)

    Google Scholar 

  12. Dai, Y., Gao, S.: A flexible multi-functional smart skin for force, touch position, proximity, and humidity sensing for humanoid robots. IEEE Sens. 21(23), 26355–26363 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Yang, X., Xu, C., Gai, Y., Jiang, Y. (2023). Electric Fish-Inspired Proximity and Pressure Sensing Electronic Skin. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14271. Springer, Singapore. https://doi.org/10.1007/978-981-99-6495-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6495-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6494-9

  • Online ISBN: 978-981-99-6495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics