Skip to main content

Motion Control and Simulation Analysis of a Manipulator Based on Computed Torque Control Method

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14267))

Included in the following conference series:

  • 654 Accesses

Abstract

The accurate position and motion control of the end-effector for robot execution is an important research direction of robot control. Based on the computed torque model, a Proportional-Integral-Derivative computed torque control (PID-CTC) method is introduced, in order to describe the process of implementing the end position control strategy for the robot manipulator. Compared with the traditional position control method, the computed torque control method can better handle the nonlinear problem when the parameters all known. Compared with the response and tracking performance of the robot manipulator to the two input trajectories, the results show that the PID-CTC control effect has low error and high accuracy, which is an efficient motion control method.

Supported by National Natural Science Foundation of China under Grant No. 52275005 and Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2022JQ-342

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan, M.F., et al.: Control strategies for robotic manipulators. In: 2012 International Conference of Robotics and Artificial Intelligence, IEEE (2012)

    Google Scholar 

  2. Elsisi, M., et al.: Effective nonlinear model predictive control scheme tuned by improved NN for robotic manipulators. IEEE Access 9, 64278–64290 (2021)

    Article  Google Scholar 

  3. Zhang, D., Wei, B.: A review on model reference adaptive control of robotic manipulators. Annu. Rev. Control. 43, 188–198 (2017)

    Article  Google Scholar 

  4. Kurfess, T.R.: Robotics and Automation Handbook. CRC Press, Boca Raton (2018)

    Google Scholar 

  5. Iqbal, J., et al.: Nonlinear control systems-a brief overview of historical and recent advances. Nonlinear Eng. 6(4), 301–312 (2017)

    Article  Google Scholar 

  6. Qin, Y., et al.: A control theoretic approach to ABR video streaming: a fresh look at PID-based rate adaptation. IEEE Trans. Mob. Comput. 19(11), 2505–2519 (2019)

    Article  Google Scholar 

  7. Vaidyanathan, S., Volos, C.: Advances and applications in nonlinear control systems. Springer (2016). https://doi.org/10.1007/978-3-319-30169-3

    Article  MATH  Google Scholar 

  8. Breazeal, C., et al.: Social Robotics. Springer handbook of robotics: 1935–1972 (2016)

    Google Scholar 

  9. AL-Azzawi, S.F., Aziz, M.M.: Strategies of linear feedback control and its classification. TELKOMNIKA (Telecommunication Computing Electronics and Control) 17(4), 1931–1940 (2019)

    Google Scholar 

  10. Kchaou, A., et al.: Second order sliding mode-based MPPT control for photovoltaic applications. Sol. Energy 155, 758–769 (2017)

    Article  Google Scholar 

  11. Nagababu, V., Imran, A.: Artificial neural networks based attitude controlling of longitudinal autopilot for general aviation aircraft. Int. J. Adv. Res. Electrical, Electron. Instrum. Eng. 7(1) (2018)

    Google Scholar 

  12. Toquica, A., et al.: Kinematic modelling of a robotic arm manipulator using Matlab. J. Eng. Appl. Sci. 12(7) (2017)

    Google Scholar 

  13. Emran, B.J., et al.: Robust adaptive control design for quadcopter payload add and drop applications. In: 2015 34th Chinese Control Conference (CCC), IEEE (2015)

    Google Scholar 

  14. Islam, R., et al.: Design and comparison of two control strategies for multi-DOF articulated robotic arm manipulator. J. Control Eng. Appl. Inform. 16(2), 28–39 (2014)

    Google Scholar 

  15. Sangdani, M., et al.: Genetic algorithm-based optimal computed torque control of a vision-based tracker robot: simulation and experiment. Eng. Appl. Artif. Intell. 67, 24–38 (2018)

    Article  Google Scholar 

  16. Kousik, S., et al.: Bridging the gap between safety and real-time performance in receding-horizon trajectory design for mobile robots. Int. J. Robot. Res. 39(12), 1419–1469 (2020)

    Article  Google Scholar 

  17. Piltan, F., et al.: Design baseline computed torque controller. Int. J. Eng. 6(3), 129–141 (2012)

    MathSciNet  Google Scholar 

  18. Varga, Á., et al.: Experimental and simulation-based performance analysis of a computed torque control (CTC) method running on a double rotor aeromechanical testbed. Electronics 10(14), 1745 (2021)

    Article  Google Scholar 

  19. Armstrong, B., et al.: The explicit dynamic model and inertial parameters of the PUMA 560 arm. Proceedings. In: 1986 IEEE International Conference on Robotics and Automation, IEEE (1986)

    Google Scholar 

  20. Corke, P.I., Armstrong-Helouvry, B.: A search for consensus among model parameters reported for the PUMA 560 robot. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, IEEE (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengcang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, C., Chen, Z., Jin, W., Guo, W. (2023). Motion Control and Simulation Analysis of a Manipulator Based on Computed Torque Control Method. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6483-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6482-6

  • Online ISBN: 978-981-99-6483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics