Skip to main content

Effect of Direct Current Electrowetting on Dielectric on Droplet Impingement Dynamics

  • Conference paper
  • First Online:
Fluid Mechanics and Fluid Power, Volume 5 (FMFP 2022)

Abstract

Although the impinging dynamics of droplets on solid surfaces has been extensively studied, a complete study on the impact of impinging droplets on direct current electrowetting on dielectric (DC-EWOD) substrates with different configurations of electrodes and voltages is found limited. In order to investigate the dielectric performance and dynamics of EWOD with different voltages, experiments are performed on DC-EWOD. Parametric studies involving droplet diameter, droplet height, applied voltage, electrode spacing, etc., are studied in this work. At a Weber number of 20.02, jetting is inhibited by the application of direct current to the EWOD chip and the droplet shift to one side, and the magnitude of voltages shows a dominant effect on this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

θ:

Final contact angle (°)

θ0:

Initial contact angle (°)

εr:

Relative permittivity

ε0:

Permittivity of vacuum (F/m)

d:

Dielectric thickness (µm)

γLV:

Surface tension (N/m)

V:

Voltage (V)

We:

Weber number

v:

Characteristic velocity (m/s)

References

  1. Lim B, Vavassori P, Sooryakumar R, Kim C (2016) Nano/micro-scale magnetophoretic devices for biomedical applications. J Phys D Appl Phys 50:033002

    Article  Google Scholar 

  2. Datta S, Das AK, Das PK (2017) Influence of surface contact angle on uphill motion of droplets due to electrostatic actuation. In: Fluid mechanics and fluid power–contemporary research. Springer, pp 1305–1313

    Google Scholar 

  3. Datta S, Kumar P, Das AK (2019) Manipulation of droplets by electrostatic actuation and the related hydrodynamics. J Indian Inst Sci 99(1):121–141

    Article  Google Scholar 

  4. Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors Actuators, A 95(2):259–268. Papers from the Proceedings of the 14th IEEE International conference on microelectromechanical systems

    Google Scholar 

  5. Accardo A, Mecarini F, Leoncini M, Brandi F, Di Cola E, Burghammer M, Riekel C, Di Fabrizio E (2013) Fast, active droplet interaction: coalescence and reactive mixing controlled by electrowetting on a superhydrophobic surface. Lab Chip 13:332–335

    Article  Google Scholar 

  6. Choi K, Ng AH, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Article  Google Scholar 

  7. Doering C, Strassner J, Fouckhardt H (2021) Microdroplet actuation via light line optoelectrowetting (ll-oew). Int J Anal Chem 2021

    Google Scholar 

  8. Li J et al (2020) Current commercialization status of electrowetting-on-dielectric (ewod) digital microfluidics. Lab Chip 20(10):1705–1712

    Article  Google Scholar 

  9. Vo PQ, Husser MC, Ahmadi F, Sinha H, Shih SC (2017) Image-based feedback and analysis system for digital microfluidics. Lab Chip 17(20):3437–3446

    Article  Google Scholar 

  10. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281

    Article  Google Scholar 

  11. Geng H, Feng J, Stabryla LM, Cho SK (2017) Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets. Lab Chip 17(6):1060–1068

    Article  Google Scholar 

  12. Bindiganavale G, You SM, Moon H (2014) Study of hotspot cooling using electrowetting on dielectric digital microfluidic system. In: 2014 IEEE 27th International conference on micro electro mechanical systems (MEMS). IEEE, pp 1039–1042

    Google Scholar 

  13. Bharathidasan T, Narayanan TN, Sathyanaryanan S, Sreejakumari S (2015) Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films. Carbon 84:207–213

    Article  Google Scholar 

  14. Basu BJ, Bharathidasan T, Anandan C (2013) Superhydrophobic oleophobic PDMS-silica nanocomposite coating. Surf Innov 1(1):40–51

    Article  Google Scholar 

  15. Asai B (2022) Outcomes following droplet impact on a hydrophilic substrate: spreading, jetting, and partial rebound. PhD Thesis, Washington State University

    Google Scholar 

  16. Tan J, Wang H, Sun M, Tian P, Wang Y, Wang K, Jiang D (2021) Regulating droplet impact on a solid hydrophobic surface through alternating current electrowetting-on-dielectric. Phys Fluids 33(4):042101

    Article  Google Scholar 

  17. Nandakumar Chandran K, Naveen P, Abhilash R, Kumar Ranjith S (2021) Theoretical modelling of droplet extension on hydrophobic surfaces. Int J Comput Fluid Dyn 35(7):534–548

    Google Scholar 

  18. Rajesh RS, Naveen P, Krishnakumar K, Ranjith SK (2019) Dynamics of single droplet impact on cylindrically-curved super-heated surfaces. Exp Thermal Fluid Sci 101:251–262

    Article  Google Scholar 

  19. Ulahannan L, Krishnakumar K, Nair AR, Ranjith SK (2021) An experimental study on the effect of nanoparticle shape on the dynamics of Leidenfrost droplet impingement. Exp Comput Multiphase Flow 3(1):47–58

    Article  Google Scholar 

  20. Chen R-H, Chiu S-L, Lin T-H (2007) Resident time of a compound drop impinging on a hot surface. Appl Therm Eng 27(11–12):2079–2085

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CSIR-NIIST Pappanamcode for helping with the fabrication of the EWOD chip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shebin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niju Mohammed, K. et al. (2024). Effect of Direct Current Electrowetting on Dielectric on Droplet Impingement Dynamics. In: Singh, K.M., Dutta, S., Subudhi, S., Singh, N.K. (eds) Fluid Mechanics and Fluid Power, Volume 5. FMFP 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-6074-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6074-3_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6073-6

  • Online ISBN: 978-981-99-6074-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics