Skip to main content

Application of Graphene in Supercapacitor and Wearable Sensor

  • Chapter
  • First Online:
Advanced Multifunctional Materials from Fibrous Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 201))

  • 154 Accesses

Abstract

The performance of energy storage devices and sensors is predominantly influenced by the microstructure and composition of the electrode materials. The two-dimensional (2D) structure of graphene has attracted significant attention in the research of supercapacitors and wearable sensors due to its remarkable electrical conductivity, mechanical properties, and large surface area surpassing that of carbon nanotubes. The inherent porous structure of graphene provides ample space for the storage and transportation of electrolyte ions, enabling fast charge/discharge kinetics. The human body is a complex system abundant with sensory organs such as fingers, nose, mouth, and more. Numerous physiological signals are continuously generated, which can reflect the body's condition. However, the interface between commercial rigid sensors and the skin is often inadequate, resulting in suboptimal signal quality. In this chapter, our objective is to review the recent advancements in graphene research and development for the applications of supercapacitors and wearable sensors. We will provide an overview of various synthesis strategies for graphene and explore their potential utilization in both asymmetric/symmetric supercapacitors and wearable sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ameri SK, Wang L (2020) Graphene electronic tattoo sensors for point-of-care personal health monitoring and human–machine interfaces In: Emerging 2D materials and devices for the internet of things. Elsevier, pp 59–86

    Google Scholar 

  • Annett J, Cross GL (2016) Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535(7611):271–275

    Article  ADS  Google Scholar 

  • Bepete G, Anglaret E, Ortolani L, Morandi V, Huang K, Pénicaud A et al (2017) Surfactant-free single-layer graphene in water. Nat Chem 9(4):347–352

    Article  Google Scholar 

  • Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22(20):5667–5671

    Article  Google Scholar 

  • Bose S, Kim NH, Kuila T, Lau K-T, Lee JH (2011) Electrochemical performance of a graphene–polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology 22(29):295202

    Article  Google Scholar 

  • Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59(466):e472

    Google Scholar 

  • Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO 2. Nat Nanotechnol 3(4):206–209

    Article  Google Scholar 

  • Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4):1146–1152

    Article  Google Scholar 

  • Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13(39):17615–17624

    Article  Google Scholar 

  • Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5(1):38–51

    Article  ADS  Google Scholar 

  • El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330

    Article  ADS  Google Scholar 

  • Golparvar AJ, Yapici MK (2018) Electrooculography by wearable graphene textiles. IEEE Sens J 18(21):8971–8978

    Article  ADS  Google Scholar 

  • Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    Article  ADS  Google Scholar 

  • Hsu H-C, Wang C-H, Nataraj S, Huang H-C, Du H-Y, Chang S-T et al (2012) Stand-up structure of graphene-like carbon nanowalls on CNT directly grown on polyacrylonitrile-based carbon fiber paper as supercapacitor. Diam Relat Mater 25:176–179

    Article  ADS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  Google Scholar 

  • Kim SJ, Cho KW, Cho HR, Wang L, Park SY, Lee SE et al (2016) Stretchable and transparent biointerface using cell-sheet–graphene hybrid for electrophysiology and therapy of skeletal muscle. Adv Func Mater 26(19):3207–3217

    Article  Google Scholar 

  • Kuzmenko AB, Van Heumen E, Carbone F, Van Der Marel D (2008) Universal optical conductance of graphite. Phys Rev Lett 100(11):117401

    Article  ADS  Google Scholar 

  • Le LT, Ervin MH, Qiu H, Fuchs BE, Lee WY (2011) Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem Commun 13(4):355–358

    Article  Google Scholar 

  • Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L et al (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11(6):566–572

    Article  ADS  Google Scholar 

  • Li Z, Xu Z, Liu Y, Wang R, Gao C (2016) Multifunctional non-woven fabrics of interfused graphene fibres. Nat Commun 7(1):1–11

    Article  ADS  Google Scholar 

  • Liang Y, Xu C, Liu F, Du S, Li G, Wang X (2019) Eliminating heat injury of zeolite in hemostasis via thermal conductivity of graphene sponge. ACS Appl Mater Interfaces 11(27):23848–23857

    Article  Google Scholar 

  • Lin S-Y, Zhang T-Y, Lu Q, Wang D-Y, Yang Y, Wu X-M et al (2017) High-performance graphene-based flexible heater for wearable applications. RSC Adv 7(43):27001–27006

    Article  ADS  Google Scholar 

  • Liu Q, Tai H, Yuan Z, Zhou Y, Su Y, Jiang Y (2019) A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring. Adv Mater Technol 4(3):1800594

    Article  Google Scholar 

  • Liu Y, Deng R, Wang Z, Liu H (2012) Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material. J Mater Chem 22(27):13619–13624

    Article  Google Scholar 

  • Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620

    Article  Google Scholar 

  • Marsh H, Reinoso FR (2006) Activated carbon. Elsevier

    Google Scholar 

  • Nakajima T, Matsuo Y (1994) Formation process and structure of graphite oxide. Carbon 32(3):469–475

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang, Y., Dubonos SV et al (2004) Electric field effect in atomically thin carbon films.Science 306(5696):666–669

    Google Scholar 

  • Park J, Kim M, Lee Y, Lee HS, Ko H (2015) Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 1(9):e1500661

    Article  ADS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  ADS  Google Scholar 

  • Qiao Y, Wang Y, Tian H, Li M, Jian J, Wei Y et al (2018) Multilayer graphene epidermal electronic skin. ACS Nano 12(9):8839–8846

    Article  Google Scholar 

  • Ramaprabhu S (2012) Poly (p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J Mater Chem 22(36):18775–18783

    Article  Google Scholar 

  • Ren X, Pei K, Peng B, Zhang Z, Wang Z, Wang X et al (2016) A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv Mater 28(24):4832–4838

    Article  Google Scholar 

  • Seredych M, Koscinski M, Sliwinska-Bartkowiak M, Bandosz TJ (2012) Active pore space utilization in nanoporous carbon-based supercapacitors: effects of conductivity and pore accessibility. J Power Sources 220:243–252

    Article  Google Scholar 

  • Sha J, Li Y, Villegas Salvatierra R, Wang T, Dong P, Ji Y et al (2017) Three-dimensional printed graphene foams. ACS Nano 11(7):6860–6867

    Article  Google Scholar 

  • Shi J, Li X, Cheng H, Liu Z, Zhao L, Yang T et al (2016) Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Func Mater 26(13):2078–2084

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Google Scholar 

  • Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31(2):1481–1487

    Article  Google Scholar 

  • Sun B, McCay RN, Goswami S, Xu Y, Zhang C, Ling Y et al (2018) Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater 30(50):1804327

    Article  Google Scholar 

  • Tan YB, Lee J-M (2013) Graphene for supercapacitor applications. J Mater Chem A 1(47):14814–14843

    Article  Google Scholar 

  • Tao L-Q, Sun H, Liu Y, Ju Z-Y, Yang Y, Ren T-L (2017a) Flexible graphene sound device based on laser reduced graphene. Appl Phys Lett 111(10):103104

    Article  ADS  Google Scholar 

  • Tao L-Q, Wang D-Y, Tian H, Ju Z-Y, Liu Y, Pang Y et al (2017b) Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale 9(24):8266–8273

    Article  Google Scholar 

  • Tao L-Q, Zhang K-N, Tian H, Liu Y, Wang D-Y, Chen Y-Q et al (2017c) Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9):8790–8795

    Article  Google Scholar 

  • Titirici M-M, White RJ, Brun N, Budarin VL, Su DS, Del Monte F et al (2015) Sustainable carbon materials. Chem Soc Rev 44(1):250–290

    Article  Google Scholar 

  • Trung TQ, Le HS, Dang TML, Ju S, Park SY, Lee NE (2018) Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. Adv Healthc Mater 7(12):1800074

    Article  Google Scholar 

  • Trung TQ, Ramasundaram S, Hwang BU, Lee NE (2016) An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater 28(3):502–509

    Article  Google Scholar 

  • Vecera P, Holzwarth J, Edelthalhammer KF, Mundloch U, Peterlik H, Hauke F et al (2016) Solvent-driven electron trapping and mass transport in reduced graphites to access perfect graphene. Nat Commun 7(1):1–7

    Article  Google Scholar 

  • Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M et al (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Func Mater 24(29):4666–4670

    Article  Google Scholar 

  • Wei Y, Qiao Y, Jiang G, Wang Y, Wang F, Li M et al (2019) A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13(8):8639–8647

    Article  Google Scholar 

  • Xiao-Ya Y (2011) Progress in preparation of graphene. J Inorg Mater 26(6):561–570

    Article  ADS  Google Scholar 

  • Xie X, Chen M, Liu P (2017) High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: the effects of multiple catalysts in situ formed by adding nickel sulfides/graphene. J Power Sources 371:112–118

    Article  Google Scholar 

  • Xu J, Hu J, Li Q, Wang R, Li W, Guo Y et al (2017) Fast batch production of high‐quality graphene films in a sealed thermal molecular movement system. Small 13(27):1700651

    Google Scholar 

  • Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H et al (2016) Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat Nanotechnol 11(11):930–935

    Article  ADS  Google Scholar 

  • Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q et al (2012) Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density. Adv Func Mater 22(12):2632–2641

    Article  Google Scholar 

  • Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47(1):145–152

    Article  Google Scholar 

  • Yang Z, Pang Y, Han X, Yang Y, Ling J, Jian M et al (2018) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9):9134–9141

    Article  Google Scholar 

  • Yapici MK, Alkhidir T, Samad YA, Liao K (2015) Graphene-clad textile electrodes for electrocardiogram monitoring. Sens Actuators B Chem 221:1469–1474

    Article  Google Scholar 

  • Yong K, Ashraf A, Kang P, Nam S (2016) Rapid stencil mask fabrication enabled one-step polymer-free graphene patterning and direct transfer for flexible graphene devices. Sci Rep 6(1):1–8

    Article  Google Scholar 

  • Yun YJ, Ju J, Lee JH, Moon SH, Park SJ, Kim YH et al (2017) Highly elastic graphene-based electronics toward electronic skin. Adv Func Mater 27(33):1701513

    Article  Google Scholar 

  • Zhao H, Lin Y-C, Yeh C-H, Tian H, Chen Y-C, Xie D et al (2014) Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations. ACS Nano 8(10):10766–10773

    Article  Google Scholar 

  • Zheng G, Chen Y, Huang H, Zhao C, Lu S, Chen S et al (2013) Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics. ACS Appl Mater Interfaces 5(20):10288–10293

    Article  Google Scholar 

  • Zhou W, Liu J, Chen T, Tan KS, Jia X, Luo Z et al (2011) Fabrication of Co 3 O 4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys Chem Chem Phys 13(32):14462–14465

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project “Graphene / graphite-filled carbon fiber-reinforced composite designed especially for battery protection boxes in electric cars” (Reg. No. TM03000010), Technology Agency of Czech Republic (TAČR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohanapriya Venkataraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, Q., Tan, X., Venkataraman, M., Militký, J. (2023). Application of Graphene in Supercapacitor and Wearable Sensor. In: Militký, J., Venkataraman, M. (eds) Advanced Multifunctional Materials from Fibrous Structures. Advanced Structured Materials, vol 201. Springer, Singapore. https://doi.org/10.1007/978-981-99-6002-6_3

Download citation

Publish with us

Policies and ethics