Skip to main content

Flame Retardancy of Textiles—New Strategies and Mechanisms

  • Chapter
  • First Online:
Advanced Multifunctional Materials from Fibrous Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 201))

  • 220 Accesses

Abstract

Textile substrates are pervasive in our everyday life as apparel, industrial and technical textile goods, etc., and are made up of polymers; natural, semi-synthetic, or synthetic though most of them are inherently flammable. The considerable amounts of toxic gases, smoke, heat, ashes, and melt drips produced during their burning cause immeasurable damage to human life and property every year. Hence, among different functional properties, flame retardancy of these textile polymeric materials has been a subject matter of prime significant concern due to the requisites to minimize fire risks and meet fire safety requirements. Meanwhile, the art of flame retardant applications is taking a new shape globally considering the modification of textile surfaces as well as the structure of applied flame retardant compounds. However, numerous efficient traditional flame retardants based on organo-halogenated, organo-phosphorous, organo-nitrogen compounds, minerals, other compounds, etc., have been developed to impart flame retardancy in textile materials. Nevertheless, some of these compounds have been observed to have adverse effects on living beings and the environment because of inherent high toxicity risks, and ultimately their use has been restricted and/or banned. With existing flame retardant chemicals, various new substituted active materials, finishing agents, and potential technologies including cleaner and greener approaches based on intrinsic char formation, intumescence, nanotechnology, sol–gel, plasma treatment, biomimetic coatings, etc., are being discovered, processed, and developed to encounter the challenges and requirements of ever-changing safety regulations. Indeed, these are interdisciplinary developments that include rather a lot of scientific and engineering research implements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akovali G, Gundogan G (1990) Studies on flame retardancy of polyacrylonitrile fiber treated by flame-retardant monomers in cold plasma. J Appl Polym Sci 41(9–10):2011–2019

    Article  Google Scholar 

  • Alongi J, Carosio F, Malucelli G (2014) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149. https://doi.org/10.1016/j.polymdegradstab.2013.07.012

    Article  Google Scholar 

  • Alongi J, Ciobanu M, Malucelli G (2012a) Sol–gel treatments on cotton fabrics for improving thermal and flame stability: effect of the structure of the alkoxysilane precursor. Carbohydr Polym 87(1):627–635. https://doi.org/10.1016/j.carbpol.2011.08.036

    Article  Google Scholar 

  • Alongi J, Ciobanu M, Malucelli G (2012b) Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr Polym 87(3):2093–2099. https://doi.org/10.1016/j.carbpol.2011.10.032

    Article  Google Scholar 

  • Alongi J, Ciobanu M, Tata J, Carosio F, Malucelli G (2011) Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol–gel treatments. J Appl Polym Sci 119(4):1961–1969. https://doi.org/10.1002/app.32954

    Article  Google Scholar 

  • Alongi J, Han Z, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci 51:28–73. https://doi.org/10.1016/j.progpolymsci.2015.04.010

    Article  Google Scholar 

  • Alongi J, Malucelli G (2012) State of the art and perspectives on sol–gel derived hybrid architectures for flame retardancy of textiles. J Mater Chem 22(41):21805–21809. https://doi.org/10.1039/C2JM32513F

    Article  Google Scholar 

  • Alongi J, Malucelli G (2015) Cotton flame retardancy: state of the art and future perspectives. RSC Adv 5(31):24239–24263. https://doi.org/10.1039/C5RA01176K

    Article  Google Scholar 

  • American Society for Testing and Materials (2021) Standard terminology of fire standards, ASTM E176 - 21a. ASTM International Standards

    Google Scholar 

  • Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):1–16

    Article  Google Scholar 

  • Bajaj P (2002) Finishing of textile materials. J Appl Polym Sci 83(3):631–659. https://doi.org/10.1002/app.2262

    Article  Google Scholar 

  • Bann B, Miller SA (1958) Melamine and derivatives of melamine. Chem Rev 58(1):131–172. https://doi.org/10.1021/cr50019a004

    Article  Google Scholar 

  • Barker RL, Brewster EP (1982) Evaluating the flammability and thermal shrinkage of some protective fabrics. J Ind Fabr 1:7–17

    Google Scholar 

  • Basak S, Ali SW (2016) Sustainable fire retardancy of textiles using bio-macromolecules. Polym Degrad Stab 133:47–64. https://doi.org/10.1016/j.polymdegradstab.2016.07.019

    Article  Google Scholar 

  • Bentis A, Boukhriss A, Grancaric AM, El Bouchti M, El Achaby M, Gmouh S (2019) Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions. Cellulose 26:2139–2153

    Article  Google Scholar 

  • Beyer G, Lan T (2014) Polymer nanocomposites: a nearly universal FR synergist. In: Morgan AB (ed) Non-halogenated flame retardant handbook. Wiley Online Library, pp 243–292. https://doi.org/10.1002/9781118939239.ch7

  • Beyler CL, Hirschler MM (2002) Thermal decomposition of polymers. In: SFPE handbook of fire protection engineering, vol 2. National Fire Protection Association Quincy, MA, pp 110–131

    Google Scholar 

  • Blanchard EJ, Graves EE (2003) Phosphorylation of cellulose with some phosphonic acid derivatives. Text Res J 73(1):22–26

    Article  Google Scholar 

  • Bourbigot S (2008) Flame retardancy of textiles: new approaches. In Horrocks AR, Price D (eds) Advances in fire retardant materials. Woodhead Publishing and CRC Press, pp 9–40. https://doi.org/10.1533/9781845694701.1.9

  • Bourbigot S (2021) Intumescence-based flame retardant. In: Morgan AB (ed) Non-halogenated flame retardant handbook. Wiley, pp 169–238

    Chapter  Google Scholar 

  • Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17(22):2283–2300

    Article  Google Scholar 

  • Bourbigot S, Jama C, Le Bras M, Delobel R, Dessaux O, Goudmand P (1999b) New approach to flame retardancy using plasma assisted surface polymerisation techniques. Polym Degrad Stab 66(1):153–155

    Article  Google Scholar 

  • Bourbigot S, Le Bras M, Leeuwendal R, Shen KK, Schubert D (1999a) Recent advances in the use of zinc borates in flame retardancy of EVA. Polym Degrad Stab 64(3):419–425. https://doi.org/10.1016/S0141-3910(98)00130-X

    Article  Google Scholar 

  • Bourbigot S, Le Bras M, Duquesne S, Rochery M (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289(6):499–511. https://doi.org/10.1002/mame.200400007

    Article  Google Scholar 

  • Brancatelli G, Colleoni C, Massafra MR, Rosace G (2011) Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polym Degrad Stab 96(4):483–490. https://doi.org/10.1016/j.polymdegradstab.2011.01.013

    Article  Google Scholar 

  • Calamari TA, Harper RJ (2000) Flame retardants for textiles. Kirk-Othmer Encyclopedia of Chemical Technology

    Google Scholar 

  • Camino G (1998) Flame retardants: intumescent systems. In: Pritchard G (ed) Plastics additives. Springer Nature, pp 297–306. https://doi.org/10.1007/978-94-011-5862-6_33

  • Camino G, Costa L (1986) Mechanism of intumescence in fire retardant polymers. Rev Inorg Chem 8(1–2):69–100

    Article  Google Scholar 

  • Camino G, Costa L (1988) Performance and mechanisms of fire retardants in polymers-a review. Polym Degrad Stab 20(3–4):271–294

    Article  Google Scholar 

  • Camino G, Costa L, Casorati E, Bertelli G, Locatelli R (1988) The oxygen index method in fire retardance studies of polymeric materials. J Appl Polym Sci 35(7):1863–1876

    Article  Google Scholar 

  • Camino G, Costa L, Luda di Cortemiglia MP (1991) Overview of fire retardant mechanisms. Polymer Degrad Stab 33(2):131–154. https://doi.org/10.1016/0141-3910(91)90014-I

    Article  Google Scholar 

  • Camino G, Costa L, Martinasso G (1989) Intumescent fire-retardant systems. Polym Degrad Stab 23(4):359–376. https://doi.org/10.1016/0141-3910(89)90058-X

    Article  Google Scholar 

  • Camino G, Costa L, Trossarelli L (1984a) Study of the mechanism of intumescence in fire retardant polymers: part I-thermal degradation of ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 6(4):243–252. https://doi.org/10.1016/0141-3910(84)90004-1

  • Camino G, Costa L, Trossarelli L (1985a) Study of the mechanism of intumescence in fire retardant polymers: part V-mechanism of formation of gaseous products in the thermal degradation of ammonium polyphosphate. Polym Degrad Stab 12(3):203–211. https://doi.org/10.1016/0141-3910(85)90089-8

  • Camino G, Costa L, Trossarelli L, Costanzi F, Landoni G (1984b) Study of the mechanism of intumescence in fire retardant polymers: part IV-evidence of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 8(1):13–22

    Article  Google Scholar 

  • Camino G, Costa L, Trossarelli L (1984c) Study of the mechanism of intumescence in fire retardant polymers: part II-mechanism of action in polypropylene-ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 7(1):25–31

    Article  Google Scholar 

  • Camino G, Costa L, Trossarelli L (1984d) Study of the mechanism of intumescence in fire retardant polymers: part III-effect of urea on the ammonium polyphosphate-pentaerythritol system. Polym Degrad Stab 7(4):221–229

    Article  Google Scholar 

  • Camino G, Costa L, Trossarelli L, Costanzi F, Pagliari A (1985b) Study of the mechanism of intumescence in fire retardant polymers: Part VI-Mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 12(3):213–228

    Article  Google Scholar 

  • Camino G, Martinasso G, Costa L (1990) Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent systems: part I-overall thermal degradation. Polym Degrad Stab 27(3):285–296

    Article  Google Scholar 

  • Carosio F, Ghanadpour M, Alongi J, Wågberg L (2018) Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Carbohyd Polym 202:479–487

    Article  Google Scholar 

  • Carosio F, Alongi J (2018) Flame retardant multilayered coatings on acrylic fabrics prepared by one-step deposition of chitosan/montmorillonite complexes. Fibers 6(2):36

    Article  Google Scholar 

  • Carosio F, Alongi J, Frache A (2011) Influence of surface activation by plasma and nanoparticle adsorption on the morphology, thermal stability and combustion behavior of PET fabrics. Eur Polymer J 47(5):893–902

    Article  Google Scholar 

  • Cashen NA, Reinhardt RM (1976) Flame-retardant coating based on THPOH-dimethylolurea-NH3 for cellulosic and cellulosic-blend fabrics. Text Res J 46(12):899–903

    Article  Google Scholar 

  • Charles QY, Wu WD (2003) Combination of a hydroxyfunctional organophosphorus oligomer and a mulfunctional carboxylic acid as a flame retardant finishing system for cotton: part I. The chemical reactions. Fire Mater 27(5):223–237

    Article  Google Scholar 

  • Chen HL, Burns LD (2006) Environmental analysis of textile products. Cloth Text Res J 24(3):248–261. https://doi.org/10.1177/0887302X06293065

    Article  Google Scholar 

  • Cheng X-W, Guan J-P, Yang X-H, Tang R-C, Yao F (2019) A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric. J Clean Prod 223:342–349

    Article  Google Scholar 

  • Cheng X-W, Liang C-X, Guan J-P, Yang X-H, Tang R-C (2018) Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric. Appl Surf Sci 427:69–80

    Article  Google Scholar 

  • Costes L, Laoutid F, Brohez S, Dubois P (2017) Bio-based flame retardants: when nature meets fire protection. Mater Sci Eng: R: Reports 117:1–25. https://doi.org/10.1016/j.mser.2017.04.001

    Article  Google Scholar 

  • Darnerud PO (2003) Toxic effects of brominated flame retardants in man and in wildlife. Environ Int 29(6):841–853. https://doi.org/10.1016/S0160-4120(03)00107-7

    Article  Google Scholar 

  • Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self‐assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Berichte Der Bunsengesellschaft Für Physikalische Chemie 95(11):1430–1434

    Google Scholar 

  • Delobel R, Bras ML, Ouassou N, Alistiqsa F (1990) Thermal behaviours of ammonium polyphosphate-pentaerythritol and ammonium pyrophosphate-pentaerythritol intumescent additives in polypropylene formulations. J Fire Sci 8(2):85–108

    Article  Google Scholar 

  • Dombrowski R (1996) Flame retardants for textile coatings. J Coat Fabr 25(3):224–238

    Article  Google Scholar 

  • Du J, Li H, Xu S, Zhou Q, Jin M, Tang J (2019) A review of organophosphorus flame retardants (OPFRs): occurrence, bioaccumulation, toxicity, and organism exposure. Environ Sci Pollut Res 26(22):22126–22136

    Article  Google Scholar 

  • Ellard JA (1973) Performance of intumescent fire barriers. In: Abstracts of papers of the American chemical society, division of organic coatings and plastics chemistry, ACS 165th meeting. Dallas, Taxas, USA, pp 531–545

    Google Scholar 

  • Esposito S (2019) “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 12(4):668

    Article  Google Scholar 

  • Feng Y, Zhou Y, Li D, He S, Zhang F, Zhang G (2017) A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohyd Polym 175:636–644. https://doi.org/10.1016/j.carbpol.2017.06.129

    Article  Google Scholar 

  • Fenimore CP (1975) Candle-type test for flammability of polymers. In: Flame-retardant polymeric materials. Springer, pp 371–397

    Google Scholar 

  • Fenimore CP, Martin FJ (1966) Flammability of polymers. Combust Flame 10(2):135–139

    Article  Google Scholar 

  • Frenzel P, Hillerbrand R, Pfennig A (2014) Increase in energy and land use by a bio-based chemical industry. Chem Eng Res Des 92(10):2006–2015. https://doi.org/10.1016/j.cherd.2013.12.024

    Article  Google Scholar 

  • Gaan S, Salimova V, Rupper P, Ritter A, Schmid H (2011) Flame retardant functional textiles. In: Pan N, Sun G (eds) Functional textiles for improved performance, protection and health. Woodhead Publishing, pp 98–130. https://doi.org/10.1533/9780857092878.98

  • Gaan S, Sun G, Hutches K, Engelhard MH (2008) Effect of nitrogen additives on flame retardant action of tributyl phosphate: phosphorus–nitrogen synergism. Polym Degrad Stab 93(1):99–108. https://doi.org/10.1016/j.polymdegradstab.2007.10.013

    Article  Google Scholar 

  • Georlette P (2001) Applications of halogen flame retardants. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing, pp 264–292

    Google Scholar 

  • Giraud S, Bourbigot S, Rochery M, Vroman I, Tighzert L, Delobel R, Poutch F (2005) Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polym Degrad Stab 88(1):106–113

    Article  Google Scholar 

  • Gordon PG (1981) Flame retardants and textile materials. Fire Saf J 4(2):109–123

    Article  Google Scholar 

  • Grancaric AM, Colleoni C, Guido E, Botteri L, Rosace G (2017) Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Prog Org Coat 103:174–181

    Article  Google Scholar 

  • Grayson M (1997) Encyclopedia of textiles fibers and nonwoven fabrics, 1st edn. Wiley Interscience

    Google Scholar 

  • Green J (1996) Mechanisms for flame retardancy and smoke suppression-a review. J Fire Sci 14(6):426–442. https://doi.org/10.1177/073490419601400602

    Article  Google Scholar 

  • Grishanov S (2011) Structure and properties of textile materials. In: Clark M (ed) Handbook of textile and industrial dyeing; principles, processes and types of dyes, vol 1. Woodhead Publishing, pp 28–63. https://doi.org/10.1533/9780857093974.1.28

  • Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JSM, Poon LLM (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302(5643):276–278

    Article  Google Scholar 

  • Haile M, Leistner M, Sarwar O, Toler CM, Henderson R, Grunlan JC (2016) A wash-durable polyelectrolyte complex that extinguishes flames on polyester–cotton fabric. RSC Adv 6(40):33998–34004

    Article  Google Scholar 

  • Hao J, Chow WK (2003) A brief review of intumescent fire retardant coatings. Archit Sci Rev 46(1):89–95

    Article  Google Scholar 

  • Heinrich T, Carl C, Paul K, Walter S (1938) Fireproofing of wood. U.S. Patent 2,106,938

    Google Scholar 

  • Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72

    Article  Google Scholar 

  • Hendrix JE, Drake GL, Reeves WA (1972) Effects of fabric weight and construction on OI values for cotton cellulose. J Fire Flamm 3:38–45

    Google Scholar 

  • Hirschler M (2014) Flame retardants: background and effectiveness. In: Fire protection engineering magazine, 3rd Quarter, pp 32–42

    Google Scholar 

  • Hirschler MM (1982) Recent developments in flame-retardant mechanisms. In: Gerald S (ed) Developments in polymer stabilisation, vol 5. Elsevier and Applied Science Publishers, pp 107–152

    Google Scholar 

  • Hirschler MM (2000) Chemical aspects of thermal decomposition of polymeric materials. In: Grand AF, Wilkie CA (eds) Fire retardency of polymeric materials. Marcel Dekker Inc., pp 27–79

    Google Scholar 

  • Holme I (1994) Flammability—the environment and the green movement. J Soc Dyers Colour 110(11):362–366. https://doi.org/10.1111/j.1478-4408.1994.tb01598.x

    Article  Google Scholar 

  • Horacek H, Grabner R (1996) Advantages of flame retardants based on nitrogen compounds. Polym Degrad Stab 54(2–3):205–215. https://doi.org/10.1016/S0141-3910(96)00045-6

    Article  Google Scholar 

  • Hornsby PR (2001) Fire retardant fillers for polymers. Int Mater Rev 46(4):199–210. https://doi.org/10.1179/095066001771048763

    Article  Google Scholar 

  • Hornsby PR, Rothon RN (2005) Fire retardant fillers for polymers. In: Le Bras M, Wilkie CA, Bourbigot S, Duquesne S, Jama C (eds) Fire retardancy of polymers: new applications of mineral fillers. The Royal Society of Chemistry, pp 19–41

    Chapter  Google Scholar 

  • Horrocks AR (1996) Developments in flame retardants for heat and fire resistant textiles-the role of char formation and intumescence. Polym Degrad Stab 54(2–3):143–154. https://doi.org/10.1016/S0141-3910(96)00038-9

    Article  Google Scholar 

  • Horrocks AR (1983) An introduction to the burning behaviour of cellulosic fibres. J Soc Dyers Colour 99(7–8):191–197. https://doi.org/10.1111/j.1478-4408.1983.tb03686.x

    Article  Google Scholar 

  • Horrocks AR (1986) Flame-retardant finishing of textiles. Rev Prog Color Relat Top 16(1):62–101. https://doi.org/10.1111/j.1478-4408.1986.tb03745.x

    Article  Google Scholar 

  • Horrocks AR (2001) Textiles. In: Horrocks AR, Price D (eds) Fire retardant materials Woodhead Publishing and CRC Press LLC, pp 128–181

    Google Scholar 

  • Horrocks AR (2003) Flame-retardant finishes and finishing. In: Heywood D (ed) Textile finishing. Society of Dyers and Colourists, pp 214–250

    Google Scholar 

  • Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96(3):377–392. https://doi.org/10.1016/j.polymdegradstab.2010.03.036

    Article  Google Scholar 

  • Horrocks AR, Alongi J (2013) Fundamental aspects of flame retardancy. In: Alongi J, Horrocks AR, Carosio F, Malucelli G (eds) Update on flame retardant textiles: state of the art, environmental issues and innovative solutions. Smithes Rapra, pp 19–52

    Google Scholar 

  • Horrocks AR, Anand SC, Sanderson D (1996) Complex char formation in flame retarded fibre-intumescent combinations: 1. Scanning electron microscopic studies. Polymer 37(15):3197–3206

    Article  Google Scholar 

  • Horrocks AR, Davies PJ, Kandola BK, Alderson A (2007) The potential for volatile phosphorus-containing flame retardants in textile back-coatings. J Fire Sci 25(6):523–540

    Article  Google Scholar 

  • Horrocks AR, Eivazi S, Ayesh M, Kandola B (2018) Environmentally sustainable flame retardant surface treatments for textiles: the potential of a novel atmospheric plasma/UV laser technology. Fibers 6(2):31

    Article  Google Scholar 

  • Horrocks AR, Hall ME, Roberts D (1997) Environmental consequences of using flame-retardant textiles—a simple life cycle analytical model. Fire Mater 21(5):229–234. https://doi.org/10.1002/(SICI)1099-1018(199709/10)21:5%3c229::AID-FAM614%3e3.0.CO;2-U

    Article  Google Scholar 

  • Horrocks AR, Kandola BK, Davies PJ, Zhang S, Padbury SA (2005) Developments in flame retardant textiles—a review. Polym Degrad Stab 88(1):3–12. https://doi.org/10.1016/j.polymdegradstab.2003.10.024

    Article  Google Scholar 

  • Horrocks AR, Nazaré S, Masood R, Kandola B, Price D (2011) Surface modification of fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane. Polym Adv Technol 22(1):22–29

    Article  Google Scholar 

  • Horrocks AR, Price D (eds) (2001) Fire retardant materials. Woodhead Publishing and CRC Press

    Google Scholar 

  • Horrocks AR, Tune M, Cegielka L (1988) The burning behaviour of textiles and its assessment by oxygen-index methods. Text Prog 18(1–3):1–186. https://doi.org/10.1080/00405168908689004

    Article  Google Scholar 

  • Horrocks AR, Wang MY, Hall ME, Sunmonu F, Pearson JS (2000) Flame retardant textile back-coatings. Part 2. Effectiveness of phosphorus-containing flame retardants in textile back-coating formulations. Polym Int 49(10):1079–1091

    Article  Google Scholar 

  • Hribernik S, Smole MS, Kleinschek KS, Bele M, Jamnik J, Gaberscek M (2007) Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stab 92(11):1957–1965. https://doi.org/10.1016/j.polymdegradstab.2007.08.010

    Article  Google Scholar 

  • Hull TR, Law RJ, Bergman Å (2014) Environmental drivers for replacement of halogenated flame retardants. In Papaspyrides CD, Kiliaris P (eds) Polymer green flame retardants. Elsevier, pp 119–179. https://doi.org/10.1016/B978-0-444-53808-6.00004-4

  • Imam SH, Bilbao-Sainz C, Chiou B-S, Glenn GM, Orts WJ (2013) Biobased adhesives, gums, emulsions, and binders: current trends and future prospects. J Adhes Sci Technol 27(18–19):1972–1997

    Article  Google Scholar 

  • International Organization for Standardization (2017) Fire safety—vocabulary, ISO 13943. ISO Standards Catalogue

    Google Scholar 

  • Islam M, van de Ven T (2021) Cotton-based flame-retardant textiles: a review. BioResources 16(2):4354–4381

    Article  Google Scholar 

  • Jimenez M, Duquesne S, Bourbigot S (2006) Intumescent fire protective coating: toward a better understanding of their mechanism of action. Thermochim Acta 449(1–2):16–26. https://doi.org/10.1016/j.tca.2006.07.008

    Article  Google Scholar 

  • Jimenez M, Guin T, Bellayer S, Dupretz R, Bourbigot S, Grunlan JC (2016) Microintumescent mechanism of flame‐retardant water‐based chitosan–ammonium polyphosphate multilayer nanocoating on cotton fabric. J Appl Polym Sci 133(32)

    Google Scholar 

  • Kandola BK (2001) Nanocomposites. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing, pp 204–2019

    Google Scholar 

  • Kandola BK (2009) Flame retardancy design for textiles. In: Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials. Taylor & Francis and CRC Press

    Google Scholar 

  • Kandola BK, Horrocks AR (1999) Complex char formation in flame-retarded fiber/intumescent combinations: physical and chemical nature of char1. Text Res J 69(5):374–381

    Article  Google Scholar 

  • Kandola BK, Horrocks AR (2000) Complex char formation in flame-retarded fibre-intumescent combinations-IV. Mass loss and thermal barrier properties. Fire Mater 24(6):265–275

    Article  Google Scholar 

  • Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Part C 36(4):721–794. https://doi.org/10.1080/15321799608014859

    Article  Google Scholar 

  • Kay M, Price AF, Lavery I (1979) Review of intumescent materials, with emphasis on melamine formulations. J Fire Retard Chem 6(2):69–91

    Google Scholar 

  • Kilinc M (2014) Silicon based flame retardants. In Morgan AB (ed) Non-halogenated flame retardant handbook. Wiley Online Library, pp 169–199. https://doi.org/10.1002/9781118939239.ch5

  • Kim SJ, Jang J (2017) Synergistic UV-curable flame-retardant finish of cotton using comonomers of vinylphosphonic acid and acrylamide. Fibers Polym 18:2328–2333

    Article  Google Scholar 

  • Klatt M (2014) Nitrogen‐based flame retardants. In: Morgan AB (ed) Non‐halogenated flame retardant handbook. Wiley Online Library, pp 143–168. https://doi.org/10.1002/9781118939239.ch4

  • Kovačević Z, Flinčec Grgac S, Bischof S (2021) Progress in biodegradable flame retardant nano-biocomposites. Polymers 13(5):741

    Article  Google Scholar 

  • Kozłowski RM, Muzyczek M (2020) Improving the flame retardancy of natural fibres. In: Handbook of natural fibres. Woodhead Publishing, pp 355–391

    Google Scholar 

  • Kozlowski R, Wesolek D, Wladyka-Przybylak M, Duquesne S, Vannier A, Bourbigot S, Delobel R (2007) Intumescent flame-retardant treatments for flexible barriers. In: Duquesne S, Magniez C, Camino G (eds) Multifunctional barriers for flexible structure. Springer Nature, pp 39–61

    Chapter  Google Scholar 

  • Kroenke WJ (1986) Low-melting sulphate glasses and glass-ceramics, and their utility as fire and smoke retarder additives for poly (vinyl chloride). J Mater Sci 21(4):1123–1133

    Article  Google Scholar 

  • Kundu CK, Li Z, Song L, Hu Y (2020) An overview of fire retardant treatments for synthetic textiles: from traditional approaches to recent applications. Eur Polymer J 137:109911. https://doi.org/10.1016/j.eurpolymj.2020.109911

    Article  Google Scholar 

  • Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng: R: Reports 63(3):100–125. https://doi.org/10.1016/j.mser.2008.09.002

    Article  Google Scholar 

  • Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay-Chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4(3):1643–1649. https://doi.org/10.1021/am2017915

    Article  Google Scholar 

  • Lawler TE, Drews MJ, Barker RH (1985) Pyrolysis and combustion of cellulose. VIII. Thermally initiated reactions of phosphonomethyl amide flame retardants. J Appl Polym Sci 30(5):2263–2277. https://doi.org/10.1002/app.1985.070300537

    Article  Google Scholar 

  • Lazar ST, Kolibaba TJ, Grunlan JC (2020) Flame-retardant surface treatments. Nat Rev Mater 1–17

    Google Scholar 

  • Le Bras M, Bourbigot S, Camino G, Delobel R (eds) (1998) Fire retardancy of polymers: the use of intumescence, vol 224. The Royal Society of Chemistry

    Google Scholar 

  • Levchik S (2014) Phosphorus‐based FRs. In: Morgan AB (ed) Non‐halogenated flame retardant handbook. Wiley Online Library, pp 17–74. https://doi.org/10.1002/9781118939239.ch2

  • Levchik SV (2007) Introduction to flame retardancy and polymer flammability. In: Morgan AB, Wilkie CA (eds) Flame retardant polymer nanocomposites, vol 1. Wiley, pp 1–29

    Google Scholar 

  • Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24(5):345–364. https://doi.org/10.1177/0734904106068426

    Article  Google Scholar 

  • Lewin M (1984) Flame Retardance of Fabrics. In: Lewin M, Sello SB (eds) Handbook of fiber science and technology volume II: chemical processing of fibers and fabrics, functional finishes part B. Marcel Dekker Inc., pp 1–142

    Google Scholar 

  • Lewin M (2005) Unsolved problems and unanswered questions in flame retardance of polymers. Polym Degrad Stab 88(1):13–19. https://doi.org/10.1016/j.polymdegradstab.2003.12.011

    Article  Google Scholar 

  • Lewin M (2018) Flame retardance of fabrics. In: Handbook of fiber science and technology: chemical processing of fibers and fabrics. Routledge, pp 1–141

    Google Scholar 

  • Lewin M, Weil E (2001) Mechanisms and modes of action in flame retardancy. In: Richard Horrocks A, Price D (eds) Fire retardant materials. Woodhead Publishing and CRC Press, pp 31–68

    Google Scholar 

  • Lewin M, Sello SB (2012) Technology and test methods of flameproofing of cellulosics. In: Lewin M, Atlas SM, Pearce EM (eds) Flame-retardant polymeric materials. Springer Nature, pp 19–136

    Google Scholar 

  • Liu W, Chen L, Wang Y-Z (2012) A novel phosphorus-containing flame retardant for the formaldehyde-free treatment of cotton fabrics. Polym Degrad Stab 97(12):2487–2491

    Article  Google Scholar 

  • Liu Y, Wang Q-Q, Jiang Z-M, Zhang C-J, Li Z-F, Chen H-Q, Zhu P (2018) Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J Anal Appl Pyrol 135:289–298

    Article  Google Scholar 

  • Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27(8):1661–1712. https://doi.org/10.1016/S0079-6700(02)00018-7

    Article  Google Scholar 

  • Lyon RE (1998) Pyrolysis kinetics of char forming polymers. Polym Degrad Stab 61(2):201–210

    Article  Google Scholar 

  • Malucelli G (2016) Surface-engineered fire protective coatings for fabrics through sol-gel and layer-by-layer methods: an overview. Coatings 6(3):33. https://doi.org/10.3390/coatings6030033

    Article  MathSciNet  Google Scholar 

  • Malucelli G (2019) Biomacromolecules and bio-sourced products for the design of flame retarded fabrics: current state of the art and future perspectives. Molecules 24(20):3774. https://doi.org/10.3390/molecules24203774

    Article  Google Scholar 

  • Malucelli G, Carosio F, Alongi J, Fina A, Frache A, Camino G (2014) Materials engineering for surface-confined flame retardancy. Mater Sci Eng R Reports 84:1–20. https://doi.org/10.1016/j.mser.2014.08.001

    Article  Google Scholar 

  • Morgan A, Gilman J (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater 37. https://doi.org/10.1002/fam.2128

  • Morgan AB, Wilkie CA (2009) An introduction to polymeric flame retardancy, its role in materials science, and the current state of the field. In Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials, 2nd edn.. Taylor & Francis and CRC Press, pp 1–14

    Google Scholar 

  • Nair GP (2000) Flammability in textiles and routes to flame retardant textiles—II. Important factors in fabric flammability studies - decomposition and burning of textile fibers; complex nature of fabric flammability; variety and multiplicity of flammability and burni. Colourage 39–40:42–44

    Google Scholar 

  • National Institute of Environmental Health Sciences (n.d.) Flame retardants. https://www.niehs.nih.gov/health/materials/flame_retardants_508.pdf

  • Neisius M, Stelzig T, Liang S, Gaan S (2014) Flame retardant finishes for textiles. In: Paul R (ed) Functional finishes for textiles: Improving comfort, performance and protection. Woodhead Publishing, pp 429–461

    Google Scholar 

  • Nodera A, Kanai T (2006) Flame retardancy of a polycarbonate–polydimethylsiloxane block copolymer: the effect of the dimethylsiloxane block size. J Appl Polym Sci 100(1):565–575. https://doi.org/10.1002/app.23331

    Article  Google Scholar 

  • Olsen JW, Bechle CW (1948) Anaconda wire and cable. U.S. Patent 2,442,706

    Google Scholar 

  • Oulton DP (1995) Environmental impacts of the textiles industry. In: Carr CM (ed) Chemistry of the textile industry. Springer Science and Business Media, pp 333–354

    Google Scholar 

  • Ozcan G, Dayioglu H, Candan C (2003) Effect of gray fabric properties on flame resistance of knitted fabric. Text Res J 73(10):883–891. https://doi.org/10.1177/004051750307301006

    Article  Google Scholar 

  • Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives. Carbohyd Polym 115:516–524. https://doi.org/10.1016/j.carbpol.2014.08.084

    Article  Google Scholar 

  • Pelzl B, Wolf R, Kaul BL (2018) Plastics additives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–57. https://doi.org/10.1002/14356007.a20_459.pub2

  • Price D, Horrocks AR (2010) Polymer degradation and the matching of FR chemistry to degradation. In Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials, 2nd edn. Taylor & Francis and CRC Press, pp 15–42

    Google Scholar 

  • Price D, Horrocks AR, Akalin M, Faroq AA (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrol 40–41:511–524. https://doi.org/10.1016/S0165-2370(97)00043-0

    Article  Google Scholar 

  • Puri RG, Khanna AS (2017) Intumescent coatings: a review on recent progress. J Coat Technol Res 14(1):1–20

    Article  Google Scholar 

  • Reeves WA, Guthrie JD (1956) Intermediate for flame-resistant polymers-reactions of tetrakis (hydroxymethyl) phosphonium chloride. Ind Eng Chem 48(1):64–67

    Article  Google Scholar 

  • Roberts DL, Hall ME, Horrocks AR (1992) Environmental aspects of flame-retardant textiles-an overview. Rev Prog Color Relat Top 22(1):48–57. https://doi.org/10.1111/j.1478-4408.1992.tb00089.x

    Article  Google Scholar 

  • Samani P, van der Meer Y (2020) Life cycle assessment (LCA) studies on flame retardants: a systematic review. J Clean Prod 274:123259

    Article  Google Scholar 

  • Samanta KK, Basak S, Chattopadhyay SK (2015) Sustainable flame-retardant finishing of textiles: advancement in technology. In: Muthu SS (ed) Handbook of sustainable apparel production. Taylor & Francis and CRC Press, pp 66–91

    Google Scholar 

  • Schindler WD, Hauser PJ (2004) Introduction to chemical finishing. In: Schindler WD, Hauser PJ (eds) Chemical finishing of textiles. Woodhead Publishing and CRC Press, pp 1–6

    Google Scholar 

  • Segev O, Kushmaro A, Brenner A (2009) Environmental impact of flame retardants (persistence and biodegradability). Int J Environ Res Public Health 6(2):478–491

    Article  Google Scholar 

  • Šehić A, Tavčer PF, Simončič B (2016) Flame retardants and environmental issues—Ognjevarna sredstva in okoljski vidiki. Environment 3:20–26

    Google Scholar 

  • Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16(3):950–963

    Article  Google Scholar 

  • Soliman MY, Hassabo AG (2021) Environmentally friendly inorganic materials for anti-flammable cotton fabrics. J Text Color Polym Sci 18(2):97–110

    Google Scholar 

  • Sonnier R, Vahabi H, Ferry L, Lopez-Cuesta J-M (2012) Pyrolysis-combustion flow calorimetry: a powerful tool to evaluate the flame retardancy of polymers. Fire Polym VI: New Adv Flame Retard Chem Sci 361–390. https://doi.org/10.1021/bk-2012-1118.ch024

  • Sonnier R, Taguet A, Ferry L, Lopez-Cuesta JM (2018) Biobased flame retardants. In: Towards bio-based flame retardant polymers. Springer Nature, pp 33–72

    Google Scholar 

  • Stepniczka H, Dipietro J (1971) Flammability characteristics of cotton and polyester fibers. J Appl Polym Sci 15(9):2149–2172. https://doi.org/10.1002/app.1971.070150909

    Article  Google Scholar 

  • Sutker BJ (2000) Flame retardants. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Part B 61(1):2–30

    Article  Google Scholar 

  • Tesoro GC (1978) Chemical modification of polymers with flame-retardant compounds. J Polym Sci: Macromol Rev 13(1):283–353

    Google Scholar 

  • Tomasino C (1992) Flame retardant finishes. In: Chemistry and technology of fabric preparation and finishing. Department of Textile Engineering, Chemistry & Science College of Textiles North Carolina State University, Raleigh, North Carolina, USA, pp 189–208

    Google Scholar 

  • Troitzsch J, Antonatus E (2021) Plastics flammability handbook: principles, regulations, testing, and approval. Carl Hanser Verlag GmbH Co KG.

    Google Scholar 

  • Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699

    Article  Google Scholar 

  • Tursi A (2019) A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J 6(2):962–979

    Article  Google Scholar 

  • Vahabi H, Laoutid F, Mehrpouya M, Saeb MR, Dubois P (2021) Flame retardant polymer materials: an update and the future for 3D printing developments. Mater Sci Eng R Rep 144:100604. https://doi.org/10.1016/j.mser.2020.100604

    Article  Google Scholar 

  • Van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16(8):615–620

    Article  Google Scholar 

  • Vandersall HL (1971) Intumescent coating system, their development and chemistry. J Fire Flamm 2:97–140. https://cir.nii.ac.jp/crid/1572543024441086336

  • Vasiljević J, Hadžić S, Jerman I, Černe L, Tomšič B, Medved J, Godec M, Orel B, Simončič B (2013) Study of flame-retardant finishing of cellulose fibres: organic–inorganic hybrid versus conventional organophosphonate. Polym Degrad Stab 98(12):2602–2608

    Article  Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933. https://doi.org/10.1016/j.fuel.2009.10.022

  • Villamil Watson DA, Schiraldi DA (2020) Biomolecules as flame retardant additives for polymers: a review. Polymers 12(4):849. https://doi.org/10.3390/polym12040849

    Article  Google Scholar 

  • Vladimirtseva EL, Smirnova SV, Odintsova OI, Vinokurov MV (2016) Flame-retardant finishing of different textiles. Russ J Gen Chem 86(2):460–469

    Article  Google Scholar 

  • Wakelyn PJ (2008) Environmentally friendly flame resistant textiles. In: Advances in fire retardant materials. Woodhead Publishing and CRC Press, pp 188–212

    Google Scholar 

  • Wang L-H, Ren Y-L, Wang X-L, Zhao J-Y, Zhang Y, Zeng Q, Gu Y-T (2016) Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer. Cellulose 23:2689–2700

    Article  Google Scholar 

  • Wang MY, Horrocks AR, Horrocks S, Hall ME, Pearson JS, Clegg S (2000) Flame retardant textile back-coatings. Part 1: antimony-halogen system interactions and the effect of replacement by phosphorus-containing agents. J Fire Sci 18(4):265–294

    Google Scholar 

  • Watanabe I, Sakai S (2003) Environmental release and behavior of brominated flame retardants. Environ Int 29(6):665–682. https://doi.org/10.1016/S0160-4120(03)00123-5

    Article  Google Scholar 

  • Weil ED (2011) Fire-protective and flame-retardant coatings—a state-of-the-art review. J Fire Sci 29(3):259–296

    Article  Google Scholar 

  • Weil ED, Levchik SV (2008) Flame retardants in commercial use or development for textiles. J Fire Sci 26(3):243–281

    Article  Google Scholar 

  • Wesolek D, Gieparda W (2014) Single-and multiwalled carbon nanotubes with phosphorus based flame retardants for textiles. J Nanomater 2014:15

    Article  Google Scholar 

  • Whewell CS (1970) The finishing of textile fabrics. Text Prog 2(3):1–72. https://doi.org/10.1080/00405167008688970

    Article  Google Scholar 

  • Wu W, Yang CQ (2006) Comparison of different reactive organophosphorus flame retardant agents for cotton: part I. The bonding of the flame retardant agents to cotton. Polym Degrad Stab 91(11):2541–2548. https://doi.org/10.1016/j.polymdegradstab.2006.05.010

    Article  Google Scholar 

  • Wyld O (1735) Making or preparing of paper linen canvass and such like substances which will neither flame nor retain fire and which have also a property in it of resisting moisture and damps. British Patent 551:17

    Google Scholar 

  • Xu F, Zhong L, Xu Y, Zhang C, Zhang F, Zhang G (2019) Highly efficient flame-retardant and soft cotton fabric prepared by a novel reactive flame retardant. Cellulose 26:4225–4240

    Article  Google Scholar 

  • Xu H, Wang Z, Zhang S, Guo M, Chen M, Shi L (2018) Research progress on toxicity effects of organophosphate flame retardants. Asian J Ecotoxicol 3:19–30

    Google Scholar 

  • Xu L, Wang W, Yu D (2017) Durable flame retardant finishing of cotton fabrics with halogen-free organophosphonate by UV photoinitiated thiol-ene click chemistry. Carbohyd Polym 172:275–283

    Article  Google Scholar 

  • Yan H, Zhao L, Fang Z, Wang H (2017) Construction of multilayer coatings for flame retardancy of ramie fabric using layer-by-layer assembly. J Appl Polym Sci 134(48):45556

    Article  Google Scholar 

  • Yang CQ (2013) Flame resistant cotton. In: Handbook of fire resistant textiles. Woodhead Publishing, pp 177–220

    Google Scholar 

  • Yang CQ, Chen Q (2019) Flame retardant finishing of the polyester/cotton blend fabric using a cross-linkable hydroxy-functional organophosphorus oligomer. Fire Mater 43(3):283–293. https://doi.org/10.1002/fam.2699

    Article  Google Scholar 

  • Yang CQ, He Q, Lyon RE, Hu Y (2010) Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab 95(2):108–115. https://doi.org/10.1016/j.polymdegradstab.2009.11.047

    Article  Google Scholar 

  • Yang CQ, Wu W (2003) Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: part II. Formation of calcium salt during laundering. Fire Mater 27(5):239–251

    Article  Google Scholar 

  • Yang H, Yang CQ (2008) Flame retardant finishing of nylon/cotton blend fabrics using a hydroxy-functional organophosphorus oligomer. Ind Eng Chem Res 47(7):2160–2165

    Article  Google Scholar 

  • Yuan H, Xing W, Zhang P, Song L, Hu Y (2012) Functionalization of cotton with UV-cured flame retardant coatings. Ind Eng Chem Res 51(15):5394–5401

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Student Grant Competition of the Technical University of Liberec, Czech Republic under the Project No. SGS-2022-6069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Militký .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faheem, S. et al. (2023). Flame Retardancy of Textiles—New Strategies and Mechanisms. In: Militký, J., Venkataraman, M. (eds) Advanced Multifunctional Materials from Fibrous Structures. Advanced Structured Materials, vol 201. Springer, Singapore. https://doi.org/10.1007/978-981-99-6002-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6002-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6001-9

  • Online ISBN: 978-981-99-6002-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics