Skip to main content

Flexible Electrically Conductive Elastomers

  • Chapter
  • First Online:
Advanced Multifunctional Materials from Fibrous Structures

Abstract

Since new technology domains including intelligent robotics, wearable gadgets, stretchable electronics, and body-conformable systems have developed, the demand for stretchable products has been increasing significantly. For the manufacturing of such kind of composite, several rubbers and conductive polymers including ethylene–propylene–diene monomer (EPDM), nitrile, and butyl, natural are extensively applied. The present study deals with the development of electrically conductive polymers by using non-conductive rubbers and fillers. Conductive fillers including expanded graphite, carbon, carbon nano tubes, metal powders, carbon fibres, graphite, and others are used to make such rubber materials conductive. The developed materials deal with good elasticity or stretch ability as well as electrical conductivity. The low mechanical characteristics of these materials limit their widespread application. The most novel applications of developed polymers are stretchable sensors such as temperature sensors, pressure sensors and strain sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

The work was supported by the project ‘Advanced structures for thermal insulation in ex-treme conditions (Reg. No. 21–32510 M) granted by the Czech Science Foundation (GACR).

The research was also supported by ‘Textile structures combining virus protection and comfort’ reg.c.:cz.01.1.02/0.0/0.0//20_321/0024467.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Militký .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, A. et al. (2023). Flexible Electrically Conductive Elastomers. In: Militký, J., Venkataraman, M. (eds) Advanced Multifunctional Materials from Fibrous Structures. Advanced Structured Materials, vol 201. Springer, Singapore. https://doi.org/10.1007/978-981-99-6002-6_1

Download citation

Publish with us

Policies and ethics