Skip to main content

Processing of Composites with Metallic, Ceramic, and Polymeric Matrices

  • Chapter
  • First Online:
Structural Composite Materials

Part of the book series: Composites Science and Technology ((CST))

  • 217 Accesses

Abstract

One of the key engineering materials invented and explored by researchers in recent times is Composite materials because of their wide range of applications starting from transportation to aerospace, leisure industries and electronic industries. The development of various classes of composite materials requires derivations and evolution of several processing techniques to achieve successful incorporation and desired distribution of reinforcements throughout the matrix. In this chapter, an overview of the processing of various classes of composites viz. “Metal Matrix Composites” (MMCs), “Ceramic Matrix Composite” (CMCs), and “Polymer Matrix Composites” (PMCs) are presented along with recent trends in processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reinhart TJ (1998) Overview of composite materials. Handbook of composites. Springer, Boston, MA, pp 21–33

    Chapter  Google Scholar 

  2. Prashanth S, Subbaya KM, Nithin K, Sachhidananda S (2017) Fiber reinforced composites—a review. J Mater Sci Eng 6(03):2–6

    Google Scholar 

  3. Fiedler B, Gojny FH, Wichmann MH, Nolte MC, Schulte K (2006) Fundamental aspects of nano-reinforced composites. Compos Sci Technol 66(16):3115–3125

    Article  CAS  Google Scholar 

  4. Chandra R, Singh SP, Gupta K (1999) Damping studies in fiber-reinforced composites—a review. Compos Struct 46(1):41–51

    Article  Google Scholar 

  5. Soutis C (2005) Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 41(2):143–151

    Article  Google Scholar 

  6. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35(3):371–376

    Article  Google Scholar 

  7. Ashbee KH (1993) Fundamental principles of fiber reinforced composites. CRC Press

    Google Scholar 

  8. Kim JK, Mai YW (eds) (1998) Engineered interfaces in fiber reinforced composites. Elsevier

    Google Scholar 

  9. Vassilopoulos AP, Keller T (2011) Fatigue of fiber-reinforced composites. Springer Science & Business Media

    Google Scholar 

  10. Zhao X, Wang X, Wu Z, Keller T, Vassilopoulos AP (2018) Effect of stress ratios on tension–tension fatigue behavior and micro-damage evolution of basalt fiber-reinforced epoxy polymer composites. J Mater Sci 53(13):9545–9556

    Article  CAS  Google Scholar 

  11. Kumar A, Vichare O, Debnath K, Paswan M (2021) Fabrication methods of metal matrix composites (MMCs). Materi Today: Proc 46:6840–6846

    CAS  Google Scholar 

  12. Dey A, Pandey KM (2015) Magnesium metal matrix composite: a review. Rev Adv Mater Sci 42:58–67

    CAS  Google Scholar 

  13. Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39(20):6153–6171

    Article  CAS  Google Scholar 

  14. Poletti C, Balog M, Schubert T, Liedtke V, Edtmaier C (2008) Production of titanium matrix composites reinforced with SiC particles. Compos Sci Technol 68(9):2171–2177

    Article  CAS  Google Scholar 

  15. Trinh SN, Sastry S (2016) Processing and properties of metal matrix composites. Mech Eng Mater Sci Independent Study 10. https://openscholarship.wustl.edu/mems500/10

  16. Kandpal BC, Kumar J, Singh H (2014) Production technologies of metal matrix composite: a review. Int J Res Mech Eng Technol 4(2):27–32

    Google Scholar 

  17. Cyriac AJ (2011) Metal matrix composites: history, status, factors and future. M.S. thesis, Oklahoma State University

    Google Scholar 

  18. Ewsuk KG, Arguello JG, Bencoe DN, Ellerby DT, Glass SJ, Zeuch DH, Anderson J (2003) Characterizing powders for dry pressing, sintering. Am Ceram Soc Bull 82(5):43

    Google Scholar 

  19. Abe H, Abe I, Sato K, Naito M (2005) Dry powder processing of fibrous fumed silica compacts for thermal insulation. J Am Ceram Soc 88(5):1359–1361

    Article  CAS  Google Scholar 

  20. Pröbster L, Diehl J (1992) Slip-casting alumina ceramics for crown and bridge restorations. Quintessence Int 23(1)

    Google Scholar 

  21. Nishihora RK, Rachadel PL, Quadri MGN, Hotza D (2018) Manufacturing porous ceramic materials by tape casting—a review. J Eur Ceram Soc 38(4):988–1001

    Article  CAS  Google Scholar 

  22. Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S (2014) Sol-gel processing of silica nanoparticles and their applications. Adv Coll Interface Sci 214:17–37

    Article  CAS  Google Scholar 

  23. Zheng K, Boccaccini AR (2017) Sol-gel processing of bioactive glass nanoparticles: a review. Adv Coll Interface Sci 249:363–373

    Article  CAS  Google Scholar 

  24. Nagel SR, MacChesney JB, Walker KL (1982) An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE Trans Microw Theory Tech 30(4):305–322

    Article  Google Scholar 

  25. Dinata AA, Rosyadi AM, Hamid S, Zainul R (2018) A review chemical vapor deposition: process and application

    Google Scholar 

  26. BelyakovIvanov AV, Fomina GA (1997) A lanxide ceramic composite material. Glass Ceram 54(7):212–214

    Article  Google Scholar 

  27. Xi-ya Z, Yue-hua T (2004) Fabrication of ceramic composites by directed metal oxidation. J Wuhan Univ Technol-Mater Sci Ed 19(1):48–50

    Article  Google Scholar 

  28. Shehata F, Fathy A, Abdelhameed M, Moustafa SF (2009) Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing. Mater Des 30(7):2756–2762

    Article  CAS  Google Scholar 

  29. Koczak MJ, Premkumar MK (1993) Emerging technologies for the in-situ production of MMCs. J Minerals Metals Mater Soc (TMS) 45(1):44–48

    Article  CAS  Google Scholar 

  30. Davallo M, Pasdar H (2009) Comparison of mechanical properties of glass-polyester composites formed by resin transfer molding and hand lay-up technique. Int J ChemTech Res 1(3):470–475

    CAS  Google Scholar 

  31. Rydarowski H, Koziol M (2015) Repeatability of glass fiber reinforced polymer laminate panels manufactured by hand lay-up and vacuum-assisted resin infusion. J Compos Mater 49(5):573–586

    Article  Google Scholar 

  32. Sabiston T, Inal K, Lee-Sullivan P (2020) Application of artificial neural networks to predict fibre orientation in long fibre compression moulded composite materials. Compos Sci Technol 190:108034

    Article  CAS  Google Scholar 

  33. Gorthala R, Roux JA, Vaughan JG (1994) Resin flow, cure and heat transfer analysis for pultrusion process. J Compos Mater 28(6):486–506

    Article  CAS  Google Scholar 

  34. Minsch N, Herrmann FH, Gereke T, Nocke A, Cherif C (2017) Analysis of filament winding processes and potential equipment technologies. Procedia CIRP 66:125–130

    Article  Google Scholar 

  35. Mertiny P, Ellyin F (2002) Influence of the filament winding tension on physical and mechanical properties of reinforced composites. Compos A Appl Sci Manuf 33(12):1615–1622

    Article  Google Scholar 

  36. Li M, Ma K, Jiang L, Yang H, Lavernia EJ, Zhang L, Schoenung JM (2016) Synthesis and mechanical behavior of nanostructured Al 5083/n-TiB2 metal matrix composites. Mater Sci Eng, A 656:241–248

    Article  CAS  Google Scholar 

  37. Jiang B, Zhenglong L, Xi C, Peng L, Nannan L, Yanbin C (2019) Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition. Ceram Int 45(5):5680–5692

    Article  CAS  Google Scholar 

  38. Naik TP, Singh I, Sharma AK (2022) Processing of polymer matrix composites using microwave energy: a review. Compos Part A: Appl Sci Manufact 106870

    Google Scholar 

  39. Wang JY, Chia KS, Liew JYR, Zhang MH (2013) Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cement Concr Compos 43:39–47

    Article  Google Scholar 

  40. Wu Y, Wang JY, Monteiro PJ, Zhang MH (2015) Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Constr Build Mater 87:100–112

    Article  Google Scholar 

  41. Korgel BA (2013) Composite for smarter windows. Nature 500(7462):278–279

    Article  CAS  Google Scholar 

  42. Sengsri P, Ngamkhanong C, Melo A, Papaelias M, Kaewunruen S (2020) Damage detection in fiber-reinforced foamed urethane composite railway bearers using acoustic emissions. Infrastructures 5(6):50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samanta, R., Sengupta, B., Mandal, G., Wazeer, A., Das, A., Sinha, A. (2024). Processing of Composites with Metallic, Ceramic, and Polymeric Matrices. In: Boppana, S.B., Ramachandra, C.G., Kumar, K.P., Ramesh, S. (eds) Structural Composite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-5982-2_5

Download citation

Publish with us

Policies and ethics