Skip to main content

Applications of Additive Manufacturing in Biomedical and Sports Industry

  • Chapter
  • First Online:
Practical Implementations of Additive Manufacturing Technologies

Abstract

The fabrication of fully functional active components via additive manufacturing, also known as 3D printing, has progressed beyond mere prototype. With composites, metals, ceramics, concrete, and polymers, it is a flexible production technique. This article focuses on the evolution of additive products in the biomedical and sports industries. Additionally, a number of instances of additive manufacturing techniques used in the creation of unique goods are provided. The use of additive manufacturing as a collaborative tool with the idea of innovative problem-solving techniques in the creation of new items has also been given a conceptual framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Krijger J, Rans C, Van Hooreweder B, Lietaert K, Pouran B, Zadpoor AA (2017) Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading. J Mech Behav Biomed Mater 70:7–16

    Article  Google Scholar 

  2. Afshar M, Anaraki AP, Montazerian H, Kadkhodapour J (2016) Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures. J Mech Behav Biomed Mater 62:481–494. https://doi.org/10.1016/j.jmbbm.2016.05.027

    Article  Google Scholar 

  3. Pecci R, Baiguera S, Ioppolo P, Bedini R, del Gaudio C (2020) 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: Manufacturing and characterization. J Mech Behav Biomed Mater 103:103583. https://doi.org/10.1016/j.jmbbm.2019.103583

    Article  Google Scholar 

  4. Liu YJ, Li SJ, Hou WT, Wang SG, Hao YL, Yang R et al (2016) Electron beam melted beta-type Ti–24Nb–4Zr–8Sn porous structures with high strength-to-modulus ratio. J Mater Sci Techno 32(6):505–508

    Article  Google Scholar 

  5. Zhang LC, Attar H, Calin M, Eckert J (2016) Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Mater Technol Adv Perform Mater 31(2):66–76

    Google Scholar 

  6. Zhang LC, Xu J, Ma E (2002) Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55) 44–xAl xSi4B2 alloys with supercooled liquid region. J Mater Res 17(07):1743–1749

    Google Scholar 

  7. Zhang LC, Shen Z, Xu J (2003) Glass formation in a (Ti, Zr, Hf)–(Cu, Ni, Ag)–Al high-order alloy system by mechanical alloying. J Mater Res 18(9):2141–2149

    Article  Google Scholar 

  8. Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1–4):509–519

    Article  Google Scholar 

  9. Pant M, Singari RM, Arora PK, Moona G, Kumar H (2020) Mater Res Express 7:11

    Article  Google Scholar 

  10. Melchels FP, Feijen J, Grijpma DW (2010) Biomaterials 31:6121

    Article  Google Scholar 

  11. Gibson I, Rosen D, Stucker B, Khorasani M (2014) Additive manufacturing technologies, 3rd ed. Springer, New York, p 675. ISBN: 978-3-030-56126-0

    Google Scholar 

  12. Lee H, Lim CHJ, Low MJ, Tham N, Murukeshan VM, Kim YJ (2017) Int J Pr Eng Man-Gt 4:307

    Google Scholar 

  13. Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, Donoghue L, Charitidis C (2018) Mater Today 21:22

    Article  Google Scholar 

  14. Ronga M, Fagetti A, Canton G, Paiusco E, Surace MF, Cherubino P (2013) Clinical applications of growth factors in bone injuries: experience with BMPs. Injury 44:S34–S39

    Article  Google Scholar 

  15. Zhang LC, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 18(4):463–475

    Article  Google Scholar 

  16. Lu H, Poh C, Zhang LC, Guo Z, Yu X, Liu H (2009) Dehydrogenation characteristics of Ti-and Ni/Ti-catalyzed Mg hydrides. J Alloys Compd 481(1):152–155

    Article  Google Scholar 

  17. Ehtemam-Haghighi S, Prashanth KG, Attar H, Chaubey AK, Cao GH, Zhang LC (2016) Evaluation of mechanical and wear properties of Ti–xNb–7Fe alloys designed for biomedical applications. Mater Des 111:592–599

    Article  Google Scholar 

  18. Liu X, Shen Y, Yang R, Zou S, Ji X, Shi L et al (2012) Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett 12(11):5733–5739

    Article  Google Scholar 

  19. Ehtemam-Haghighi S, Liu Y, Cao G, Zhang LC (2016) Phase transition, microstructural evolution and mechanical properties of Ti–Nb–Fe alloys induced by Fe addition. Mater Des 97:279–286

    Article  Google Scholar 

  20. Wohlers T, Campbell I, Huff R et al (2019) Wohlers report 2019: 3D printing and additive manufacturing state of the industry. Wohlers Associates, Fort Collins, CO

    Google Scholar 

  21. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New York

    Book  Google Scholar 

  22. Murray CJ (2015) 3D Systems going mainstream in heathcare: 3D printing is becoming a go-to for customized healthcare solutions. Des News 70:27–28

    Google Scholar 

  23. Quinlan HE, Hasan T, Jaddou J et al (2017) Industrial and consumer uses of additive manufacturing: a discussion of capabilities, trajectories, and challenges. J Ind Ecol 21:S15–S20

    Article  Google Scholar 

  24. Sandström CG (2016) The non-disruptive emergence of an ecosystem for 3D printing—insights from the hearing aid industry’s transition 1989–2008. Technol Forecast Soc Change 102:160–168

    Google Scholar 

  25. Jang TS, Kim D, Han G et al (2020) Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Biomed Eng Lett 10:505–516. https://doi.org/10.1007/s13534-020-00177-2

    Article  Google Scholar 

  26. Kelly SM, Kampe SL (2004) Microstructural evolution in laser-deposited multilayer Ti-M-4V builds: Part I. Microstructural characterization. Metall Mater Trans-Phys Metall Mater Sci 35A:1861–1867

    Google Scholar 

  27. Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3:1007–1018

    Article  Google Scholar 

  28. Krishna BV, Bose S, Bandyopadhyay A (2007) Low stiffness porous Ti structures for load-bearing implants. Acta Biomater 3:997–1006

    Article  Google Scholar 

  29. Kobryn PA, Semiatin SL (2001) The laser additive manufacture of Ti-6Al-4V. JOM 53:40–42

    Article  Google Scholar 

  30. Heinl P, Rottmair A, Körner C, Singer RF (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9:360–364

    Article  Google Scholar 

  31. Harrysson OLA, CansiZoglu O, Marcellin-Little DJ, Cormier DR, West HA (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C-Biomim Supramol Syst 28:366–373

    Article  Google Scholar 

  32. Das S, Wohlert M, Beaman JJ, Bourell DL (1999) Processing of titanium net shapes by SLS/HIP. Mater Des 20:115–121

    Article  Google Scholar 

  33. Hollander DA, Von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials 27:955–963

    Article  Google Scholar 

  34. Kumar S, Kruth J-P (2008) Wear performance of SLS/SLM materials. Adv Eng Mater 10:750–753

    Article  Google Scholar 

  35. Li JP, Habibovic P, van Den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA et al (2007) Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28:2810–2820

    Article  Google Scholar 

  36. Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635

    Article  Google Scholar 

  37. Balla VK, Devasconcellos PD, Xue W, Bose S, Bandyopadhyay A (2009) Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS). Acta Biomater 5:1831–1837

    Article  Google Scholar 

  38. Das M, Balla VK, Basu D, Bose S, Bandyopadhyay A (2010) Laser processing of SiC-particle-reinforced coating on titanium. Scr Mater 63:438–441

    Article  Google Scholar 

  39. Das M, Bysakh S, Basu D, Sampath Kumar TS, Balla VK, Bose S et al (2011) Microstructure, mechanical and wear properties of laser processed SiC particle reinforced coatings on titanium. Surf Coat Technol 205:4366–4373

    Article  Google Scholar 

  40. Zhang Y, Sahasrabudhe H, Bandyopadhyay A (2015) Additive manufacturing of Ti-Si-N ceramic coatings on titanium. Appl Surf Sci 346:428–437

    Article  Google Scholar 

  41. Janaki Ram GD, Esplin CK, Stucker BE (2008) Microstructure and wear properties of LENS deposited medical grade CoCrMo. J Mater Sci Mater Med 19:2105–2111

    Article  Google Scholar 

  42. Gaytan SM, Murr LE, Martinez E, Martinez JL, Machado BI, Ramirez DA et al (2010) Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall Mater Trans A 41:3216–3227

    Article  Google Scholar 

  43. Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ, Appl ACS (2016) ACS Appl Mater Interfaces 8:10070

    Article  Google Scholar 

  44. Small W IV, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2005) Opt Express 13:8204

    Article  Google Scholar 

  45. Peterson GI, Dobrynin AV, Becker ML (2017) Adv Healthc Mater 6

    Google Scholar 

  46. Fernandes DJ, Peres RV, Mendes AM, Elias CN (2011) ISRN Dent 2011:1

    Google Scholar 

  47. Petrini L, Migliavacca F (2011) J Metall 2011

    Google Scholar 

  48. Lendlein A, Langer R (2002) Science (80–):296, 1673

    Google Scholar 

  49. Zhang D, George OJ, Petersen KM, Jimenez-Vergara AC, Hahn MS, Grunlan MA (2014) Acta Biomater 10:4597

    Article  Google Scholar 

  50. Jung YC, Cho JW (2010) J Mater Sci Mater Med 21:2881

    Article  Google Scholar 

  51. Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf 30(July):100894. https://doi.org/10.1016/j.addma.2019.100894

    Article  Google Scholar 

  52. Yuan L (2019) Solidification defects in additive manufactured materials. Jom 71(9):3221–3222. https://doi.org/10.1007/s11837-019-03662-x

    Article  Google Scholar 

  53. Xhameni A, Cheng R, Farrow T (2022) A precision method for integrating shock sensors in the lining of sports helmets by additive manufacturing. IEEE Sens Lett 6(10):1–4. Article number 5000704. https://doi.org/10.1109/LSENS.2022.3205249

  54. Novak JI (2020) A parametric method to customize surfboard and stand up paddle board fins for additive manufacturing. Comput Aided Des Appl 18(2):297–308. https://doi.org/10.14733/cadaps.2021.297-308

  55. Graziosi S, Rosa F, Casati R, Solarino P, Vedani M, Bordegoni M (2017) Designing for metal additive manufacturing: a case study in the professional sports equipment field. Procedia Manuf 11:1544–1551. https://doi.org/10.1016/j.promfg.2017.07.288

    Article  Google Scholar 

  56. Li Z, Wang S, Ye H, Lv L, Zhao X, Liu Y, Zhou Y (2020) Preliminary clinical application of complete workflow of digitally designed and manufactured sports mouthguards. Int J Prosthodont 33:99–104

    Article  Google Scholar 

  57. Yanagi T, Kakura K, Tsuzuki T, Isshi K, Taniguchi Y, Hirofuji T, Kido H, Yoneda M (2019) Fabrication of mouthguard using digital technology. Dentistry 9:1000531

    Article  Google Scholar 

  58. Takahashi M, Koide K, Mizuhashi F (2014) Optimal heating conditions for forming a mouthguard using a circle tray: effect of different conditions on the thickness and fit of formed mouthguards. J Prosthodont Res 58:171–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrishail B. Sollapur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sollapur, S.B., Sharath, P.C., Waghmare, P. (2024). Applications of Additive Manufacturing in Biomedical and Sports Industry. In: Rajendrachari, S. (eds) Practical Implementations of Additive Manufacturing Technologies. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5949-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5949-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5948-8

  • Online ISBN: 978-981-99-5949-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics