Skip to main content

Topological Polarization in Disordered Systems

  • Conference paper
  • First Online:
Quantum Mathematics I (INdAM 2022)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 57))

Included in the following conference series:

  • 191 Accesses

Abstract

Deformations in piezoelectric materials lead to conduction effects, which are due to two contributions: the relative displacements of the ionic cores, and the so-called orbital polarization. This work is devoted to the rigorous derivation of the celebrated King-Smith and Vanderbilt formula for orbital polarization in a generalized setting which includes continuous random systems among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the sense of the resolvent.

  2. 2.

    We will assume that \(\varOmega \) is also metrizable, and in turn separable. This assumption implies that \(L^2(\varOmega )\) is a separable Hilbert space.

  3. 3.

    In the sense of Bellissard [2].

  4. 4.

    In the interesting examples \(\mathcal {G}\) is also separable and metrizable (e.g. \(\mathcal {G}=\mathbb {R}^d,\mathbb {Z}^d,\mathbb {T}^d\)) and this implies that \(L^2(\mathcal {G})\) is a separable Hilbert space.

References

  1. Bartle, G.: The Elements of Integration and Lebesgue Measure. John Wiley & Sons, New York (1995)

    Book  MATH  Google Scholar 

  2. Bellissard, J.: K-theory of \(C^*\)-Algebras in solid state physics. In: Dorlas, T.C., Hugenholtz, N.M., Winnink, M. (eds.) Statistical Mechanics and Field Theory: Mathematical Aspects. Lecture Notes in Physics, vol. 257, pp. 99–156. Springer-Verlag, Berlin (1986)

    Google Scholar 

  3. Bouclet, J.M., Germinet, F., Klein, A., Schenker, J.H.: Linear response theory for magnetic Schrödinger operators in disordered media. J. Func. Anal. 226, 301–372 (2005)

    Article  MATH  Google Scholar 

  4. Connes, A.: Noncommutative Geometry. Academic Press, Cambridge (1994)

    MATH  Google Scholar 

  5. De Nittis, G., Lein, M.: Topological Polarization in Graphene-like Systems. J. Phys. A Math. Theor. 46, 385001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Nittis, G., Lein, M.: Linear Response Theory: An Analytic-Algebraic Approach. Springer Briefs in Mathematical Physics, vol. 21. Springer, Berlin (2017)

    Google Scholar 

  7. Dixmier, J.: Von Neumann Algebras. North-Holland Publishing, Amsterdam (1981)

    MATH  Google Scholar 

  8. King-Smith, R., Vanderbilt, D.: Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993)

    Article  Google Scholar 

  9. Lenz, D.H.: Random operators and crossed products. Math. Phys. Anal. Geom. 2(2), 197–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leinfelder, H., Simader, C.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martin, R.: Comment on calculations of electric polarization in crystals. Phys. Rev. B 9, 1998–1203 (1974)

    Article  Google Scholar 

  12. Nelson, E.: Notes on non-commutative integration. J. Func. Anal. 15, 103–116 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nenciu, G.: Linear adiabatic theory: exponential estimates. Commun. Math. Phys. 152, 479–496 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Panati, G., Sparber, C., Teufel, S.: Geometric currents in piezoelectricity. Arch. Rat. Mech. Anal. 191, 387–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Mathematical Physics Studies. Springer, Berlin (2016)

    Google Scholar 

  16. Reed, M., Simon, B.: Fourier analysis. Self-Adjointness (Methods of Modern Mathematical Physics II). Academic Press, New York-London (1975)

    Google Scholar 

  17. Resta, R.: Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66(3), 899–915 (1994)

    Article  Google Scholar 

  18. Schulz-Baldes, H., Teufel, S.: Orbital Polarization and Magnetization for Independent Particles in Disordered Media. Commun. Math. Phys. 319, 649–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Terp, M.: Lp-Spaces Associated with von Neumann Algebras. Copenhagen University, Copenhagen (1981)

    Google Scholar 

  20. Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics, vol. 1821. Springer, Heidelberg (2003)

    Google Scholar 

  21. Thouless, D.J.: Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983)

    Article  MathSciNet  Google Scholar 

  22. Yeadon, F.J.: Convergence of measurable operators. Proc. Camb. Philos. Soc. 74, 257–268 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

GD’s research is supported by the grant Fondecyt Regular - 1230032. DP’s research is supported by ANID-Subdirección de Capital Humano/ Doctorado Nacional/ 2022-21220144. GD’s would like to thank the Alexander von Humboldt Foundation for supporting his stay at the University of Erlangen-Nürnberg during July 2022 where the large part of this work was completed. He is also grateful to Camping due barche (Scanzano, Italy) where the peaceful atmosphere of this place provided an invaluable help for the preparation of the final version of this manuscript. The authors are indebted to M. Lein and S. Teufel for many stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Nittis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Nittis, G., Polo Ojito, D. (2023). Topological Polarization in Disordered Systems. In: Correggi, M., Falconi, M. (eds) Quantum Mathematics I. INdAM 2022. Springer INdAM Series, vol 57. Springer, Singapore. https://doi.org/10.1007/978-981-99-5894-8_6

Download citation

Publish with us

Policies and ethics