Skip to main content

Genomic Selection and Its Application in Pearl Millet Improvement

  • Chapter
  • First Online:
Pearl Millet in the 21st Century

Abstract

Pearl millet [Pennisetum glaucum (L.) R. Br] is a staple grain for about 90 million people in India, sub-Saharan Africa, and South Asia. Genomic selection is a new tool that helps to identify better lines among experimental cultivars in plant breeding programs. Genomic selection examines the phenotypes and high-density marker scores of lines in a population to predict breeding values. The integration of all marker information in the prediction model contributes to the effectiveness of genomic selection by eliminating biased marker effect estimations and collecting more of the variance associated with small-effect quantitative trait loci (QTL). The whole genome sequence of pearl millet has recently been sequenced, allowing genomic selection models to be used to improve the selection process in the pearl millet breeding program. Genomic selection, which employs genomic-estimated breeding values of individuals obtained from genome-wide markers to identify candidates for the next breeding cycle, is a powerful tool for enhancing quantitative traits. Models used for genomic selection frequently encounter problems when the number of markers exceeds the number of phenotypic data. To address this issue and enhance prediction accuracy, genomic selection models and algorithms such as Bayesian, Gaussian, and machine learning have been used. This chapter focuses extensively on the transition from conventional selection techniques used in plant breeding to the genomic selection, the underlying statistical models and methods used for this purpose, the current state of genomic selection research in pearl millet, and the prospects for its successful application in the development of climate resilient pearl millet varieties suitable for different end users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acosta-Pech R, Crossa J, de los Campos G, Teyssèdre S, Claustres B, Pérez-Elizalde S, Pérez-Rodríguez P (2017) Genomic models with genotype x environment interaction for predicting hybrid performance: an application in maize hybrids. Theor Appl Genet 130:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • AICPMIP (2018) Proceedings of the 53rd annual group meeting of ICAR - All India Coordinated Research Project on Pearl Millet (AICPMIP). Agriculture University, Jodhpur. http://www.aicpmip.res.in/pw2018.pdf. Accessed 30 Sept 2022

  • Ambawat S, Senthilvel S, Hash CT, Nepolean T, Rajaram V, Eshwar K et al (2016) QTL mapping of pearl millet rust resistance using an integrated DArT-and SSR-based linkage map. Euphytica 209(2):461–476

    Article  Google Scholar 

  • Anuradha N, Satyavathi CT, Bharadwaj C, Nepolean T, Sankar SM, Singh SP et al (2017) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front Plant Sci 8:412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arelli PR, Young LD, Mengistu A (2006) Registration of high yielding and multiple disease-resistant soybean germplasm JTN-5503. Crop Sci 46(6):2723

    Article  Google Scholar 

  • Arelli PR, Young LD, Concibido VC (2009) Inheritance of resistance in soybean PI 567516C to LY1 nematode population infecting cv. Hartwig. Euphytica 165(1):1–4

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GE, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575(7781):109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budhlakoti N, Mishra DC, Rai A, Lal SB, Chaturvedi KK, Kumar RR (2019) A comparative study of single-trait and multi-trait genomic selection. J Comput Biol 26:1100–1112

    Article  CAS  PubMed  Google Scholar 

  • Budhlakoti N, Kushwaha AK, Rai A, Chaturvedi KK, Kumar A, Pradhan AK, Kumar U, Kumar RR, Juliana P, Mishra DC, Kumar S (2022) Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Front Genet 13:832153

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai X, Huang A, Xu S (2011) Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinformatics 12:211–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Kizilkaya K, Zeng J, Garrick D, Fernando R (2018) Genomic prediction from multiple-trait Bayesian regression methods using mixture priors. Genetics 209:89–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiquet J, Mary-Huard T, Robin S, Robin S (2017) Structured regularization for conditional Gaussian graphical models. Stat Comput 27:789–804

    Article  Google Scholar 

  • Crossa J, Campos GDL, Pérez P, Gianola D, Burgueno J, Araus JL et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186(2):713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debieu M, Sine B, Passot S, Grondin A, Akata E, Gangashetty P et al (2018) Response to early drought stress and identification of QTLs controlling biomass production under drought in pearl millet. PLoS One 13(10):e0201635

    Article  PubMed  PubMed Central  Google Scholar 

  • Djanaguiraman M, Perumal R, Ciampitti IA, Gupta SK, Prasad PVV (2018) Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant Cell Environ 41(5):993–1007

    Article  CAS  PubMed  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Fussell LK, Bidinger FR, Bieler P (1991) Crop physiology and breeding for drought tolerance: research and development. Field Crop Res 27(3):183–199

    Article  Google Scholar 

  • Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianola D, Okut H, Weigel KA, Rosa GJ (2011) Predicting complex quantitative traits with bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet 12:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Sharma RK, Anand Rajkumar K, Joseph M, Singh VP, Singh AK et al (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in basmati rice. Plant Breed 127(2):131–139

    Article  CAS  Google Scholar 

  • Goud TY, Sharma R, Gupta SK, Devi GU, Gate VL, Boratkar M (2016) Evaluation of designated hybrid seed parents of pearl millet for blast resistance. Indian J Plant Protect 44(1):83–87

    Google Scholar 

  • Govindaraj M, Rai KN, Shanmugasundaram P (2016) Intra-population genetic variance for grain iron and zinc contents and agronomic traits in pearl millet. Crop J 4(1):48–54

    Article  Google Scholar 

  • Govindaraj M, Rai KN, Kanatti A, Upadhyaya HD, Shivade H, Rao AS (2020a) Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Govindaraj M, Virk PS, Kanatti A, Cherian B, Rai KN, Anderson MS, Pfeiffer WH (2020b) Biofortified pearl millet cultivars offer potential solution to tackle malnutrition in India. In: Quantitative genetics, genomics and plant breeding. CABI, Wallingford, pp 385–396

    Chapter  Google Scholar 

  • Govindaraj M, Kanatti A, Rai KN, Pfeiffer WH, Shivade H (2021) Association of grain iron and zinc content with other nutrients in pearl millet germplasm, breeding lines, and hybrids. Front Nutr 8:746625

    Article  PubMed  Google Scholar 

  • Gupta SK, Sharma R, Rai KN, Thakur RP (2012) Inheritance of foliar blast resistance in pearl millet (Pennisetum glaucum). Plant Breed 131(1):217–219

    Article  Google Scholar 

  • Gupta SK, Rai KN, Singh P, Ameta VL, Gupta SK, Jayalekha AK et al (2015) Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L. (R.) Br.). Field Crop Res 171:41–53

    Article  Google Scholar 

  • Gupta SK, Ameta VL, Pareek S, Mahala RS, Jayalekha AK, Deora VS et al (2016) Genetic enhancement for flowering period heat tolerance in peart millet (Pennisetum glaucum L.(R.) Br.). In: 7th International Crop Science Congress, Beijing. http://oar.icrisat.org/9757/1/Page1.pdf. Accessed 30 Sept 2022

    Google Scholar 

  • Gupta SK, Ameta VL, Pareek S, Singh I, Deora VS, Verma YS et al (2019) Enhancing flowering period heat tolerance in pearl millet through shuttle breeding. In: Presented at 3rd agriculture and climate change conference, Budapest. https://www.elsevier.com/__data/assets/pdf_file/0010/847882/AGRI-2019-Oral-Programme_v5_DE.pdf. Accessed 30 Sept 2022

    Google Scholar 

  • Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:186–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12

    Article  CAS  Google Scholar 

  • Henderson CR, Kempthorne O, Searle SR, von Krosigk CM (1959) The estimation of environmental and genetic trends from records subject to culling. Biometrics 15:192

    Article  Google Scholar 

  • Hickey LT, N Hafeez A, Robinson H, Jackson SA, Leal-Bertioli S, Tester M, et al (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37(7):744–754

    Google Scholar 

  • Holliday JA, Wang T, Aitken S (2012) Predicting adaptive phenotypes from multilocus genotypes in sitka spruce (Picea sitchensis) using random forest. G3 (Bethesda) 2(9):1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan R, Subramanian V (1988) Grain quality and utilization of sorghum and pearl millet. In: Biotechnology in tropical crop improvement, pp 133–139. https://oar.icrisat.org/518/1/RA_00134.pdf

  • Jarquin D, Howard R, Liang Z, Gupta SK, Schnable JC, Crossa J (2020) Enhancing hybrid prediction in pearl millet using genomic and/or multi-environment phenotypic information of inbreds. Front Genet 10:1294

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Jannink JL (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadam DC, Potts SM, Bohn MO, Lipka A, Lorenz AJ (2016) Genomic prediction of single crosses in the early stages of maize hybrid breeding pipeline. Genes Genom Genet 6:3443–3453

    Article  Google Scholar 

  • Kanatti A, Rai KN, Radhika K, Govindaraj M, Sahrawat KL, Rao AS (2014) Grain iron and zinc density in pearl millet: combining ability, heterosis and association with grain yield and grain size. Springerplus 3(1):1–12

    Article  CAS  Google Scholar 

  • Kholová J, Hash CT, Kočová M, Vadez V (2011) Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? Environ Exp Bot 71(1):99–106

    Article  Google Scholar 

  • Klápště J, Dungey HS, Telfer EJ, Suontama M, Graham NJ, Li Y, McKinley R (2020) Marker selection in multivariate genomic prediction improves accuracy of low heritability traits. Front Genet 11:499094

    Article  PubMed  PubMed Central  Google Scholar 

  • Knox JW, Hess TM, Daccache A, Ortola MP (2011) What are the projected impacts of climate change on food crop productivity in Africa and S Asia. DFID systematic review final report. Cranfield University, p 71

    Google Scholar 

  • Krishnan SG, Singh AK, Rathour R, Nagarajan M, Bhowmick PK, Ellur RK et al (2019) Rice variety Pusa Samba 1850. Indian J Genet 79:109–110

    Google Scholar 

  • Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S et al (2021) Integrated genomic selection for rapid improvement of crops. Genomics 113(3):1070–1086

    Article  CAS  PubMed  Google Scholar 

  • Legarra A, Reverter A (2018) Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method. Genet Sel Evol 50:53–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Gupta SK, Yeh CT, Zhang Y, Ngu DW, Kumar R et al (2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3 (Bethesda) 8(7):2513–2522

    Article  CAS  PubMed  Google Scholar 

  • Long N, Gianola D, Rosa GJM, Weigel KA (2011) Application of support vector regression to genome-assisted prediction of quantitative traits. Theor Appl Genet 123:1065–1074

    Article  PubMed  Google Scholar 

  • Maenhout S, De Baets B, Haesaert G, Van Bockstaele E (2007) Support vector machine regression for the prediction of maize hybrid performance. Theor Appl Genet 115:1003–1013

    Article  CAS  PubMed  Google Scholar 

  • Maganlal SJ, Sanghani AO, Kothari VV, Raval SS, Kahodariya JH, Ramani HR et al (2018) The SSR based linkage map construction and identification of QTLs for blast (Pyricularia grisea). resistance in pearl millet (Pennisetum glaucum (L.) r. br.). J Pharmacogn Phytochem 7(2):3057–3064

    Google Scholar 

  • Massman JM, Gordillo A, Lorenzana RE, Bernardo R (2013) Genomewide predictions from maize singlecross data. Theor Appl Genet 126:13–22

    Article  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momen M, Mehrgardi AA, Sheikhi A, Kranis A, Tusell L, Morota G, Rosa GJM, Gianola D (2018) Predictive ability of genome-assisted statistical models under various forms of gene action. Sci Rep 8:12309

    Article  PubMed  PubMed Central  Google Scholar 

  • Muleta KT, Pressoir G, Morris GP (2019) Optimizing genomic selection for a sorghum breeding program in Haiti: a simulation study. G3 (Bethesda) 9(2):391–401

    Article  PubMed  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BC, Septiningsih EM et al (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115(6):767–776

    Article  CAS  PubMed  Google Scholar 

  • Ogutu JO, Schulz-Streeck T, Piepho HP (2012) Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc 6:S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Ornella L, Singh S, Perez P, Burgueño J, Singh R, Tapia E et al (2012) Genomic prediction of genetic values for resistance to wheat rusts. Plant Genome 5(3):136

    Article  CAS  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y et al (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5(3):103

    CAS  Google Scholar 

  • Raghvani KL, Juneja RP, Ghelani YH, Parmar GM, Dangaria CJ (2008) Influence of abiotic factors on population fluctuations of major insect pest of pearl millet. Indian J Appl Entomol 22:48–50

    Google Scholar 

  • Rai KN, Hash CT, Singh AK, Velu G (2008) Adaptation and quality traits of a germplasm-derived commercial seed parent of pearl millet. Plant Genet Resour Newsl 154:20–24

    Google Scholar 

  • Rai KN, Yadav OP, Gupta SK, Mahala RS (2012) Emerging research priorities in pearl millet. J SAT Agric Res 10:1–5. http://ejournal.icrisat.org/index.htm

    Google Scholar 

  • Rai KN, Yadav OP, Govindaraj M, Pfeiffer WH, Yadav HP, Rajpurohit BS et al (2016) Grain iron and zinc densities in released and commercial cultivars of pearl millet (Pennisetum glaucum). Indian J Agric Sci 86(3):11–16

    Google Scholar 

  • Ratna Madhavi K, Rambabu R, Abhilash Kumar V, Vijay Kumar S, Aruna J, Ramesh S et al (2016) Marker assisted introgression of blast (Pi-2 and Pi-54) genes in to the genetic background of elite, bacterial blight resistant indica rice variety, Improved Samba Mahsuri. Euphytica 212(2):331–342

    Article  CAS  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3(1):1–7

    Article  CAS  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robin S, Jeyaprakash P, Amudha K, Pushpam R, Rajeswari S, Manonmani S et al (2019) Rice CR1009 Sub 1 (IET 22187)-A new flood tolerant rice variety. Electron J Plant Breed 10(3):995–1004

    Article  Google Scholar 

  • Rothman AJ, Levina E, Zhu J (2010) Sparse multivariate regression with covariance estimation. J Comput Graph Stat 19:947–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J et al (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 10(5):e0122165

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma HC, Youm O (1999) Host plant resistance in integrated pest management. In: Khairwal IS, Rai KN, Andrews DJ, Harinarayana G (eds) Pearl millet breeding. Oxford and IBH Co, Pvt. Limited, New Delhi, pp 381–418

    Google Scholar 

  • Sharma R, Upadhyaya HD, Manjunatha SV, Rai KN, Gupta SK, Thakur RP (2013) Pathogenic variation in the pearl millet blast pathogen Magnaporthe grisea and identification of resistance to diverse pathotypes. Plant Dis 97(2):189–195

    Article  PubMed  Google Scholar 

  • Sharma S, Sharma R, Pujar M, Yadav D, Yadav Y, Rathore A et al (2021) Use of wild Pennisetum species for improving biotic and abiotic stress tolerance in pearl millet. Crop Sci 61(1):289–304

    Article  CAS  Google Scholar 

  • Shivhare R, Asif MH, Lata C (2020) Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. Plant Mol Biol 103(6):639–652

    Article  CAS  PubMed  Google Scholar 

  • Singh F, Nainawatee HS (1999) Grain quality traits. In: Khairwal IS, Rai KN, Andrews DJ, Harinarayana G (eds) Pearl millet breeding. Oxford & IBH, New Delhi, pp 157–183

    Google Scholar 

  • Singh P, Singh U, Eggum BO, Kumar KA, Andrews DJ (1987) Nutritional evaluation of high protein genotypes of pearl millet (Pennisetum americanum (L.) Leeke). J Sci Food Agric 38(1):41–48

    Article  CAS  Google Scholar 

  • Singh SD, King SB, Reddy PM (1990) Registration of five pearl millet germplasm sources with stable resistance to downy mildew. Crop Sci 30(5):1164

    Article  Google Scholar 

  • Singh AK, Gopala Krishnan S, Ellur RK, Bhowmick PK, Nagarajan M, Vinod KK et al (2017a) Notification of basmati rice variety, Pusa basmati 1728. Indian J Genet 77:584

    Google Scholar 

  • Singh AK, Gopala Krishnan S, Nagarajan M, Bhowmick PK, Ellur RK, Haritha B et al (2017b) Notification of basmati rice variety Pusa basmati 1637. Indian J Genet 77:583–584

    Google Scholar 

  • Singh S, Sharma R, Pushpavathi B, Gupta SK, Durgarani CV, Raj C (2018) Inheritance and allelic relationship among gene (s) for blast resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Breed 137(4):573–584

    Article  CAS  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11(2):e1004982

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava RK, Singh RB, Pujarula VL, Bollam S, Pusuluri M, Chellapilla TS et al (2020) Genome-wide association studies and genomic selection in pearl millet: advances and prospects. Front Genet 10:1389

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun M, Huang D, Zhang A, Khan I, Yan H, Wang X et al (2020) Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Biol 20(1):1–15

    Article  CAS  Google Scholar 

  • Sun M, Lin C, Zhang A, Wang X, Yan H, Khan I et al (2021) Transcriptome sequencing revealed the molecular mechanism of response of pearl millet root to heat stress. J Agron Crop Sci 207(4):768–773

    Article  CAS  Google Scholar 

  • Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197(4):1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur RP, Williams RJ (1980) Pollination effects on pearl millet ergot. Phytopathology 70(2):80–84

    Article  Google Scholar 

  • Thakur RP, King SB, Rai KN, Rao VP (1992) Identification and utilization of smut resistance in pearl millet. International Crops Research Institute for the Semi-Arid Tropics, Hyderabad

    Google Scholar 

  • Thakur RP, Sharma R, Rao VP (2011) Screening techniques for pearl millet diseases. Information bulletin no 89

    Google Scholar 

  • Usai MG, Goddard ME, Hayes BJ (2009) LASSO with cross-validation for genomic selection. Genet Res 91:427–436

    Article  CAS  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S et al (2014a) Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. Plant Genome 7(1):plantgenome2013-10

    Article  Google Scholar 

  • Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda MVC et al (2014b) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127(8):1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK, Chitikineni A, Fan G, Bajaj P, Punnuri S, Gupta SK, Wang H, Jiang Y, Couderc M, Katta MAVSK, Paudel DR, Mungra KD, Chen W, Harris-Shultz KR, Garg V, Desai N, Doddamani D, Kane NA, Conner JA, Ghatak A, Chaturvedi P, Subramaniam S, Yadav OP, Berthouly-Salazar C, Hamidou F, Wang J, Liang X, Clotault J, Upadhyaya HD, Cubry P, Rhoné B, Gueye MC, Sunkar R, Dupuy C, Sparvoli F, Cheng S, Mahala RS, Singh B, Yadav RS, Lyons E, Datta SK, Hash CT, Devos KM, Buckler E, Bennetzen JL, Paterson AH, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif JC, Liu X, Vigouroux Y, Xu X (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasistha NK, Balasubramaniam A, Mishra VK, Srinivasa J, Chand R, Joshi AK (2017) Molecular introgression of leaf rust resistance gene Lr34 validates enhanced effect on resistance to spot blotch in spring wheat. Euphytica 213(12):1–10

    Article  CAS  Google Scholar 

  • Velu G, Rai KN, Sahrawat KL, Sumalini K (2008) Variability for grain iron and zinc contents in pearl millet hybrids. J SAT Agric Res 6:4p

    Google Scholar 

  • Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63:513–521

    Article  CAS  PubMed  Google Scholar 

  • Yadav OP, Rai KN (2013) Genetic improvement of pearl millet in India. Agric Res 2(4):275–292

    Article  CAS  Google Scholar 

  • Yadav OP, Singh DV, Dhillon BS, Mohapatra T (2019) India’s evergreen revolution in cereals. Curr Sci 116(11):1805–1808

    Article  Google Scholar 

  • Yadav OP, Gupta SK, Govindaraj M, Sharma R, Varshney RK, Srivastava RK et al (2021) Genetic gains in pearl millet in India: insights into historic breeding strategies and future perspective. Front Plant Sci 12:645038

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Ji Y, Sun M, Lin C, Zhou P, Ren J et al (2021) Research on the drought tolerance mechanism of Pennisetum glaucum (L.) in the root during the seedling stage. BMC Genomics 22(1):1–14

    Article  Google Scholar 

  • Zhong S, Dekkers JC, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182(1):355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B 67:301–320

    Article  Google Scholar 

Download references

Acknowledgments

We thank “Biorender.com” for providing tools to create a figure of important trait improvement in pearl millet.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramadoss, B.R., Premnath, A., Venkatesan, T., Thirunavukkarasu, N. (2024). Genomic Selection and Its Application in Pearl Millet Improvement. In: Tonapi, V.A., Thirunavukkarasu, N., Gupta, S., Gangashetty, P.I., Yadav, O. (eds) Pearl Millet in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-99-5890-0_6

Download citation

Publish with us

Policies and ethics