Skip to main content

Thermodynamic Game and the Kac Limit in Quantum Lattices

  • Conference paper
  • First Online:
Quantum Mathematics II (INdAM 2022)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 58))

Included in the following conference series:

  • 188 Accesses

Abstract

A mathematically rigorous computation of the pressure and equilibrium states of important short-range quantum models on lattices (like the Hubbard model) to show possible phase transitions is generally elusive, beyond perturbative arguments, even after decades of mathematical studies. By contrast, such a question can be solved for mean-field models. This is done by using some form of the Bogoliubov approximation, leading to the thermodynamic game introduced in Bru and de Siqueira Pedra (Non-cooperative Equilibria of Fermi Systems with Long Range Interactions. Memoirs AMS, vol. 224, no. 1052. American Mathematical Society, Providence, 2013). Here we illustrate this abstract result on a specific, albeit still general, example. We then state recent results contributing a precise mathematical relation between mean-field and short-range models via the long-range limit that is known in the literature as the the Kac or van der Waals limit. This paves the way for studying phase transitions, or at least important fingerprints of them like strong correlations at long distances, for models having interactions whose ranges are finite, but very large as compared to the lattice constant. It also sheds a new light on mean-field models. If both attractive and repulsive long-range forces are present then it turns out that the limit mean-field model is not necessarily what one traditionally guesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, one can see the lattice points in a (space) period as a single point in an equivalent lattice on which particles have an enlarged spin set.

  2. 2.

    For E is a metrizable compact space, any finite Borel measure is regular and tight. Thus, here, probability measures are just the same as normalized Borel measures.

  3. 3.

    I.e., \(\int _{\mathbb {R}^{d}}\gamma _{\pm }^{d}f_{\pm }\left ( \gamma _{\pm }x\right ) \mathrm {d}x=\int _{\mathbb {R}^{d}}f_{\pm }\left ( x\right ) \mathrm {d}x\doteq \hat {f}_{\pm }(0)\).

  4. 4.

    Mean-field repulsions have generally a geometrical effect by possibly breaking the face structure of the set of (generalized) equilibrium states (see [1, Lemma 9.8]). When this appears, we have long-range order of correlations without necessarily a non-unique equilibrium state (i.e., first order phase transition). See [1, Section 2.9].

References

  1. Bru, J.-B., de Siqueira Pedra, W.: Non-cooperative Equilibria of Fermi Systems with Long Range Interactions. Memoirs AMS, vol. 224, no. 1052. American Mathematical Society, Providence (2013)

    Google Scholar 

  2. Bru, J.-B., de Siqueira Pedra, W., Rodrigues Alves, K.: From short-range to mean-field models in quantum lattices . Adv. Theoret. Math. Phys. To be published (2023). See arXiv:2203.01021 [math-ph] (52 pages)

    Google Scholar 

  3. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. I, 2nd edn. Springer, New York (1987)

    Book  MATH  Google Scholar 

  4. Rudin, W.: Functional Analysis. McGraw-Hill Science. McGraw-Hill, New York (1991)

    Google Scholar 

  5. Bru, J.-B., de Siqueira Pedra, W.: Quantum dynamics generated by long-range interactions for Lattice-Fermion and quantum spins. J. Math. Anal. Appl. 493(1), 124517 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zagrebnov, V.A., Bru, J.-B.: The bogoliubov model of weakly imperfect Bose gas. Phys. Rep. 350, 291–434 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Araki, H., Moriya, H.: Equilibrium statistical mechanics of fermion lattice systems. Rev. Math. Phys. 15, 93–198 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogoliubov, N.N., Jr., Brankov, J.G., Zagrebnov, V.A., Kurbatov, A.M., Tonchev, N.S.: Metod approksimiruyushchego gamil’toniana v statisticheskoi fizike. The Approximating Hamiltonian Method in Statistical Physics. Sofia: Izdat. Bulgar. Akad. Nauk. Publ. House Bulg. Acad. Sci. (1981)

    MATH  Google Scholar 

  9. Bogoliubov, N.N., Jr., Brankov, J.G., Zagrebnov, V.A., Kurbatov, A.M., Tonchev, N.S.: Some classes of exactly soluble models of problems in Quantum Statistical Mechanics: the method of the approximating Hamiltonian. Russ. Math. Surv. 39, 1–50 (1984)

    Article  Google Scholar 

  10. Brankov, J.G., Danchev, D.M., Tonchev, N.S.: Theory of Critical Phenomena in Finite–size Systems: Scaling and Quantum Effects. Word Scientific, Singapore (2000)

    Google Scholar 

  11. Brankov, J.G., Tonchev, N.S., Zagrebnov, V.A.: A nonpolynomial generalization of exactly soluble models in statistical mechanics, Ann. Phys. (N. Y.) 107(1–2), 82–94 (1977)

    Google Scholar 

  12. Brankov, J.G., Tonchev, N.S., Zagrebnov, V.A.: On a class of exactly soluble statistical mechanical models with nonpolynomial interactions, J. Stat. Phys. 20(3), 317–330 (1979)

    Article  MathSciNet  Google Scholar 

  13. Komiya, H.: Elementary proof for Sion’s minimax theorem. Kodai Math. J. 11(1), 5–7 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer, Berlin (2009)

    MATH  Google Scholar 

  15. Lieb, E.: Quantum-mechanical extension of the Lebowitz-Penrose theorem on the Van Der Waals theory. J. Math. Phys. 7(6), 1016–1024 (1966)

    Article  MathSciNet  Google Scholar 

  16. de Smedt, P., Zagrebnov V. A.: van der Waals limit of an interacting Bose gas in a weak external field. Phys. Rev. A 35(11), 4763–4769 (1987)

    Google Scholar 

  17. Cooper, L.N.: Bound electron Pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189–1190 (1956)

    Article  MATH  Google Scholar 

  18. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. (USSR) 11, 23–32 (1947)

    Google Scholar 

  21. Bogoliubov, N.N.: On some problems of the theory of superconductivity. Physica 26, S1–S16 (1960)

    Article  Google Scholar 

  22. Bogoliubov, N.N., Jr.: On model dynamical systems in statistical mechanics. Physica 32, 933 (1966)

    Article  MathSciNet  Google Scholar 

  23. Bogoliubov, N.N., Jr.: A Method for Studying Model Hamiltonians. Pergamon, Oxford (1977)

    Google Scholar 

  24. Lebowitz, J., Penrose, O.: A rigorous treatment of the Van der Waals-Maxwell theory of the vapor-liquid transition. J. Math. Phys. 7, 98 (1966)

    Article  MATH  Google Scholar 

  25. Penrose, O., Lebowitz, J.L.: Rigorous treatment of metastable states in the van der Waals-Maxwell theory. J. Stat. Phys. 3(2), 211–236 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hemmer, P. C., Lebowitz, J.L.: Systems with weak long-range potentials. In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena, vol. 5b, pp. 107–203. Academic Press, Cambridge (1976)

    Google Scholar 

  27. Franz, S., Toninelli, F.L.: Kac limit for finite-range spin glasses. Phys. Rev. Lett. 92, 030602 (2004)

    Article  Google Scholar 

  28. Franz, S., Toninelli, F.L.: Finite-range spin glasses in the Kac limit: free energy and local observables. J. Phys. A: Math. Gen. 37, 7433–7446 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Franz, S.: Spin glass models with Kac interactions. Eur. Phys. J. B 64, 557–561 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bru, J.-B., de Siqueira Pedra, W.: Classical dynamics generated by long-range interactions for lattice fermions and quantum spins. J. Math. Anal. Appl. 493(1), 124434 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bru, J.-B., de Siqueira Pedra, W.: Entanglement of classical and quantum short-range dynamics in mean-field systems. Ann. Phys. 434, 168643 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by CNPq (309723/2020-5) as well as by the Basque Government through the grant IT1615-22 and the BERC 2022-2025 program, by the COST Action CA18232 financed by the European Cooperation in Science and Technology (COST), and by the Ministry of Science and Innovation via the grant PID2020-112948GB-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. We thank Domingos Marchetti for valuable discussions and hints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Bernard Bru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bru, JB., Pedra, W.d.S., Alves, K.R. (2023). Thermodynamic Game and the Kac Limit in Quantum Lattices. In: Correggi, M., Falconi, M. (eds) Quantum Mathematics II. INdAM 2022. Springer INdAM Series, vol 58. Springer, Singapore. https://doi.org/10.1007/978-981-99-5884-9_9

Download citation

Publish with us

Policies and ethics