A partner from one of the big international companies asked: how can we optimize human and social interaction? In our innovation projects, it is as though each time we start a new project, we start from scratch. Are there any tools or methods that I can use to optimize these processes? I think this is a new competition parameter.

This question is becoming more and more relevant. We have learned that technologies are becoming more complex both in terms of technical combinations and in terms of the societal problems that must be solved. But what is often forgotten is that behind the technologies, there are humans. As technology becomes more complex, more humans will have to collaborate and there will be many more boundaries to cross. These include academics with different disciplinary backgrounds and users with different levels of education and social position in society.

Engineering has traditionally been more product- than process-focused, which means that human interaction has received less attention and been valued less. The corporate world seeks optimization in every process to achieve more efficiency and better economy—and if the optimization for specific technologies might have reached its limit on the product side, the next step will be collaboration among human beings. Companies realize the need to cross boundaries between sales and innovation departments, between contractors and subcontractors. In any innovation process today, the number of actors involved is increasing.

Therefore, it is not enough for engineering students to learn to develop the content of technology and how technologies are combined and form systems. The students also need to learn how they, as humans and collaborators interact together in the design of systems, and here both cognitive and emotional aspects are at stake which are described in Chap. 5. As described in Chap. 5, reframing engineering education will involve rethinking the interaction between knowledge and competencies. We have several concepts for these types of competencies ranging from key skills, 21st-century skills, transversal skills, transferable skills, and generic competencies (Boelt et al., 2022; EU Commision, 2008; Kallioinen, 2010; Kearns, 2001).

Generic competencies work across different contexts, in contrast to specific ones related to a subject or a disciplinary context. We are using the term generic competencies to indicate the character of the competencies, as general human competencies for work collaboration and life orientation. For many years, teamwork, communication, and project management have been added to the list of core generic competencies for engineers. Furthermore, we have chosen the competency concept to indicate the potential together with the qualification of application in practice (Fortuin et al.; Le Deist & Winterton, 2005).

Policies and regulation frameworks do exist to address both generic competencies in the engineering standards, SDGs, and accreditation. The transformation of engineering education from a teacher-centered approach toward student-centered learning, as described in Chap. 6, is also facilitated by the development of international standards and accreditation, and the mutual recognition of engineering qualifications and professional competencies (International Engineering Alliance, 2012). Accreditation can be seen as a transformative driver of change but, at the end of the day, it is the educational culture and the learning methodologies applied that will have a significant impact on students’ learning. Accreditation can form the outside framework, but the inside life depends on academia and the culture. Engineering institutions have responded to this challenge with very different strategies, from adding on workshops to integrating competency development in the curriculum.

However, very often generic competencies have suffered from a ‘lack of respect’ in the engineering curricula and have not been highly valued among engineering academics but have been tolerated in the curriculum as something ‘soft’ and potentially relevant. On the other hand, the corporate world has emphasized this as a very important component in graduate competency profiles, along with technical knowledge and competencies.

It might be hard to solve complex problems in education, but the corporate world problems should be part of students’ learning processes to prepare them for their later careers and their understanding of the diversity of problems. In the future, we will also see more and more digital learning and blended formats for engineering students, and this will create even more possibilities for active learning methodologies, to apply blended learning modes that may allow for the facilitation of university and corporate collaboration.

Teamwork, project management, communication, problem solving, etc. can all be covered under the concept of generic competencies, which are to be understood as cross-cutting competencies. Transferable skills, 21st-century skills, professional competencies, and transversal skills are other concepts for trying to conceptualize these competencies, which are related to codes for human interaction and behavior. The European Tuning project, which has been one of the research-based approaches for the process to a more student-centered learning model in higher education, defined generic competencies as a long list of competencies ranging from critical thinking, ethics, and language to problem solving and interpersonal and organizational competencies (González & Wagenaar, 2003). Scientific and technical competencies are not sufficient but have to be seen in light of society, context, human relations, and ethical purpose.

Therefore, the learning of generic competencies has to be an integrated part of the curriculum and the students’ learning outcomes (Sánchez & Ruiz, 2008). But can we enhance students’ awareness of their own learning practices, and can we bring that awareness into their education in such a way that we can formalize learning and assessment processes? Of course, there are tools that can structure—there are some quick fixes—but in the long run, this is not enough. It goes deeper, and the students need to learn to adapt, to participate in a complex collaboration. This cannot just be an external phenomenon; it must be integrated with the knowledge that one possesses, and it must be part of an entire culture and curriculum.

1 Generic and Meta-Competencies

Increased complexity at both the technical and societal levels will require collaboration, communication, and management. But it will also require competencies to continuously develop and learn how individual and collaborative competencies can be contextualized. In one situation, it will be communication by digital means; the next situation might be 24 h of face-to-face workshop. The collaborative contexts in which an engineer will have to work will differ enormously—and it is no longer enough to have experienced teamwork or to have participated in projects.

We must go above this level as the requirement today is to be able to participate in a variety of situations and to optimize the learning processes at work. It is no longer enough just to learn teamwork—the requirement is to develop teamwork skills to be efficient in various situations and to be able to choose the right collaboration strategy for the specific situation—in other words, we need to move the competencies to a meta-level.

Meta-competencies are defined, with reference to Brown (1993, p. 32) as ‘the higher-order abilities, which have to do with being able to learn, adapt, anticipate, and create, rather than with being able to demonstrate that one has the ability to do so. Moving the competencies level to a meta-level does not only concern teamwork skills, project management and communication. A much broader concept is needed in order to understand what kind of problem we are aiming to solve and what kind of methods we have available to analyze and identify the core problem (Brown, 1993). A related concept is meta-cognition which is beyond factual, conceptual, and procedural knowledge and a question of strategy in combining knowledge, knowledge about cognitive tasks, and types of self-knowledge (Krathwohl, 2002). Whereas meta-competencies are about developing generic competencies, meta-cognition is the process of acquiring knowledge on how to acquire knowledge.

There is a distinction between the concepts of meta-cognition, competency, and meta-competency and yet they are closely related. For example, meta-cognition strategies to acquire knowledge within thermodynamics can be developed. Competencies go one step further, providing strategies to handle knowledge in action as thereby the field of thermodynamics is appropriated to a given context, e.g., the design of heating and cooling systems in different types of buildings, climates, or cultures. Meta-competencies on the other hand include strategies to handle competencies in action as competencies within a specific field is transformed in interaction with other competencies, e.g., competencies within the field of heating and cooling systems are combined with competency to design smart buildings or ensure business models for sustainable products.

There is a dialectic relationship between competency and meta-competency and it can have blurred boundaries. Meta-competencies can be defined by the development, adjustment and application of competencies and, therefore, at a higher reflection level (Brown, 1993). This links the meta-competencies to a notion of lifelong learning as students learn methods for how to develop their competencies (Cunningham et al., 2015).

The relation between generic competencies and meta-competencies is similar blurred. The generic competencies consist of three components: understanding of the societal problem including ethics, interpersonal collaboration, and organization of the process. The meta-competencies in this domain are to combine, adjust, apply, and develop the interaction among the specific generic competencies (see Fig. 7.1). Generic competencies are types of practice competencies, and learning takes place through both reflection on practice and conceptualization and analysis.

Fig. 7.1
An oval shape labeled meta competences has a Venn diagram within it comprising of 3 ovals, labeled societal, interpersonal, and organizational.

Dimensions of generic and meta-competencies

We have already described the importance of viewing problems in a societal context, and as the problem complexity increases, the complexity for interpersonal relations and organization will follow. The real-life problem, interpersonal collaboration, and organization act as a trinity that is fused together. As technology is a tightly woven system, the human side will likewise be tightly woven into the functions in the system. As the complexity increases, the interactions between knowledgeable people will increase.

We cannot increase the technological complexity without addressing the human interaction. Complex challenges, such as the SDGs and the integration and development of AI and IoT systems, all involve the competencies of being able to advance learning and set future goals. Thus, strategic leadership and anticipation are two other important future competencies in complex problem approaches, as system approaches will include both strategic leadership and anticipation embedded in a system perspective (Chap. 2).

There is nothing new in emphasizing generic competencies. As described earlier, this has been part of the accreditation for engineering education for a long time in terms of teamwork, collaboration, and project management. What is new is that more types of generic competencies are in play, such as entrepreneurial and digital competencies, and also that generic competencies are combined with a meta-level moving across generic competencies. Thereby, methodologies for developing lifelong competencies through the learning of meta-competencies are needed.

As complexity and the need for system thinking increase, engineers not only need to learn to solve problems in the right way, but indeed they need to analyze the problems and to devise new solutions. If there are recurring flooding situations and the decision is to build a new river crossing, a bridge may not be the best solution. In the first design phase, engineers will have to analyze the weather conditions, the traffic situation, the ground, possible ways of crossing the river, and many more elements, before deciding on the solution. In a complex problem analysis, engineers step backward to find new solutions and combine knowledge and expertise in a new way. The ability to step back, at the right time and use the right lenses to get an overview of the whole system, including the underlying rules and values, becomes an important competency.

The same is true for the collaboration among the involved actors and the engineers. If they have been used to collaborating on bridge projects, now there might be new expertise domains involved—and they not only have to analyze the knowledge domains and contextualize their expertise to a new innovation but also the way they collaborate has to be considered. This is a totally new element in engineering education.

1.1 Tacit Knowledge—Potentials and Risks

Development of meta-competencies is difficult, as the human interaction gets mixed in many ways with the inner world of the individual. One’s way of interacting might depend on one’s upbringing, personal identity, and personal life. But regardless of this, engineers need to learn to master collaboration, diverse contexts, and complicated communications and develop these capabilities as competencies to be applied in working life and life in general. Awareness and articulation of communication strategies and collaboration strategies can be learned. Most often, past social interactions form a body of tacit knowledge for the individual.

Dreyfus and Dreyfus emphasize that the expert has such a rich pool of knowledge and experiences, that the intuitive processes of knowledge creation will not necessarily be conscious, but tacit (Dreyfus, 2004). For the expert, this might be true, while for the novice, it is important to be much more aware of the rules and the process itself—hence the need for explicit reflection.

Tacit knowledge is the opposite of explicit knowledge and can be explained in two different ways, either as knowledge we cannot articulate or explain or as embodied knowledge that can only be expressed during practice. These two perspectives are not contradictory. Knowledge can become embodied; sometimes, it can reach a stage where it can be articulated and sometimes not. The concept derives from Polanyi, who argued that scientists should recognize that not all knowledge is propositional and in order, but that a lot of our ideas and learning comes from this messy and unordered embodied knowledge, which can hardly be communicated in words but rather in action (Polanyi & Sen, 2009).

Generic and meta-competencies will remain tacit, either as unarticulated or as practice competencies, if the learning is not facilitated by reflection. Nonaka and Konno worked with tacit culture and knowledge in organizations and the interaction between the explicit and the tacit level (Nonaka & Konno, 1998, Engeström, 2001). Baumard took this approach to another level as he distinguished between individual and collective knowledge (Baumard, 1999).

Baumard points out that there is a tacit element both for the individual and the team when there is a continuous interaction and complicated relations. Tacit and non-verbal communication might create both potentials and problems for learning from practice. The potential with tacit knowledge is that it is a source of intuition for the individual and for the team. In group creativity research, it is a well-known phenomenon that ideas can be developed in a process of smaller interactions and iterations. One member of the team can present an idea, which will create responses from the other members, building on the idea in a continuous brainstorm of associations. The process of interaction will form the team members’ culture and might very often remain tacit and form tacit patterns of interactions.

The disadvantage of tacit knowledge for both the individual and the team is that it is difficult to transfer or transform knowledge and competencies from one area to the next without articulation. There is a need for both the individual and the team to be able to articulate, communicate and conceptualize. Furthermore, this creates difficulties for the development of the individual and for collective competency development, especially for the individual student in articulating and conceptualizing their own competencies when ending a project. Therefore, a process of creating attention and awareness by reflecting on these practice experiences will be an important element in learning generic competencies.

In a single team consisting of four to six students, the tacit element can lead to team creativity. Schön’s reflective practitioners and their collaboration can be compared to a blues band doing a jam session. Each participant continues add-on to the contributions of the other participants and invites them to continue the development of the communication, which can be described as open, creative, uncritical, and reflective in relation to the theme and creative. Collaborative creativity and development might occur. In online teams, tacit knowledge also exists, although it is more difficult to create a common tacit culture as there are limitations when communicating through a screen (Sawyer, 2005).

However, the potential of tacit knowledge related to the team interactions often vanishes when there is a change in team members, team size, the length or credits of the projects, physical versus digital space, problem types, or diversity pattern. Then it becomes difficult to apply the knowledge and competencies the learner has obtained in a new situation.

As an example, students might articulate their reflections on teamwork experiences continually and state action points for change in a log-book format. To work collectively, teamwork experiences from the individuals must be articulated to align and negotiate understandings and perspectives for change. Furthermore, students must realize that if considerable changes in the team constellation happen, teamwork competencies have to be transformed. For example, a predescribed team culture might be beneficial in one team, while counteractive in another team setting. Likewise, project management systems, approaches to problem solving, etc. will change with the type of problem, the intended learning outcomes, and the actual team constellation. In other words, there is a need for meta-teamwork competencies to provide strategies for the interaction of diverse teamwork competencies, such as inclusiveness, collaboration, communication, project management, problem analysis, etc.

1.2 Reflection and Meta-Reflection

If practice experiences are not reflected, these will become trial and error, which can be beneficial but remain tacit knowledge. Reflection on practice learning from the education is not only crucial for the competency development of young engineers; it also influences how ready they feel for employment and their lifelong qualification and career strategies.

Reflection is essential for progressing learning of generic competencies. Regardless of the domain, the learning is framed by the learning methods and learning environments, which will create opportunities for students to experience collaboration among peers, knowledge management, creativity, and innovation. It can be argued that there is nothing new in reflecting in and on practice to attract attention to tacit knowledge. But it is new to think of the relation between generic and meta-competencies and that the learning of meta-competencies is based on a combination of reflection on practice and theory.

Back in the 90s, the learning of the Alverno College culture was known far beyond the US borders (Gibbs, 1999) for their integration of reflection as a cultural factor. Later came the Olin College culture, where ongoing reflections in teams and for individuals after class were also an impressive contribution to the learning culture and the education of the individual. Students need to learn to reflect and articulate their experiences from collaboration, managing projects, managing cultures, problem analysis methods, collaboration with external stakeholders, presentations, etc.

Kolb (1984) does not identify reflection as a method but as an element in a learning process consisting of concrete experience, reflective observation, abstract conceptualization, and active experimentation. This underlines reflection as a key to combine practice (active experimentation) and theory (abstract conceptualization) and can be the on-reflection which is looking backward as in Schön’s conceptions on reflections (Kolb, 1984). Without abstract conceptualization, reflection-in-action can quickly become a tacit process mostly characterized by trial and error. What works and what does not work are concluded based on immediate responses in the process (see Fig. 7.2).

Fig. 7.2
A diagram of a circle has a diagonal dashed line passing through it with an arrow on it pointing diagonally to the upper left, and another pointing diagonally to the lower right. Text around the diagram include experiences, reflective observation, metacognitive dimension, and active experimentation.

Reflection relating practice and theory based on Kolb (1984)

When reflection is brought into engineering education, engineering students may not be attracted by reflection, but rather much more by experimentation—they want to experiment; they want to design and build things. Therefore, it might be an advantage to ask students to set up experiments in their learning process and collaborative processes, and then ask them to reflect on these experiments (Kofoed et al., 2003). Especially in a team, discussions on how to set up new plans for knowledge management might also create awareness of the variety of possibilities that the students will face. For example, an experiment could be to ensure knowledge management by setting up team seminars, organized with presentations of the knowledge acquired from subgroups, opponents to discuss the application of knowledge, and inputs for further knowledge acquisition. If the action and future orientation drive the process, they increase the motivation to learn from the experiences gained from their experiments.

Reflection on practice might remain at a lower taxonomy level for learning if it is not combined and integrated with more general theories. For example, students need to be able to create attention to, and awareness of, their collaboration patterns and their use of project management methods. That means that the student will become much better at reflecting on how well they are interacting in specific collaboration.

Reflection is an inner inductive process, which can be facilitated by oneself, by peers in a team, by comparing to previous similar experiences or facilitated by academic staff. Attention, awareness, and articulation enable understanding of existing practice but do not necessarily provide ideas for new innovative ways of collaborating. If reflection is not combined with theories and concepts, reflection might not contribute to learning. For example, if students state a team culture without considering theories of effective teamwork or fail to align their understandings of the team culture concept, the statement might be narrow-sided and open for diffuse interpretations.

We have to be careful that we are not teaching our students just to reflect on practice, but that they have to move around in the Kolbian learning circle and integrate the reflection of practice experiences into the learning and understanding of theories (see Fig. 7.2). Reflection on comparing several practice experiences will form the basis for understanding the variation and possible methods of project management or collaboration.

Engineering students should not only be able to apply and reflect on theory or methods in order to make constant improvements. They should also be able to question whether these are the right theories and methods or if other solutions are needed in relation to the given challenges. In integrating complex problems in engineering education, students will need to integrate values, analyze contexts, and question established norms and institutions. As an example, energy systems are highly dependent on the political climate, social movements and strong institutional dependencies. Complex problem solving is part of the new core in engineering to be able to deal with the societal as well as the human challenges and contribute to strategic leadership.

Thereby, there is a need to engage in meta-reflection as an integrated part of meta-cognition. Basically, meta-reflection happens when we reflect on how we reflect. Meta-reflection involves cross-cutting reflection on the appropriateness of the different interactions between theory and practice. Integration of meta-reflection in education is important, as it is not expected that students will develop these competencies by themselves. Rather, through guided reflections on varieties of learning experiences, students can gain a deeper insight into their problem, project, and collaborative and learning skills.

In a learning context, we characterize meta-reflection as a comprehensive reflection including different levels of reflection, see Chap. 6. In alignment with Argyris and Schön (1997) and their concepts of single- and double-loop learning, as well as the concept of triple-loop learning introduced by Tosey et al. (2012), we characterize three levels of reflection:

  1. 1.

    Single-loop reflection—that is reflection on activities (are we doing things in the right way).

  2. 2.

    Double-loop reflection—that is reflection on the governing variables (are we doing the right things).

  3. 3.

    Triple-loop reflection—that is reflection on the underlying assumptions leading to the governing variables (how do we consider what is right).

Meta-reflection thereby includes reflection considering whether we are doing things right, whether we are doing the right things and more fundamentally, what we consider as being ‘right’ (see Table 7.1). For example, in designing human collaboration, we often forget to ask ourselves what possible collaboration strategies we can apply, and we forget to ask why we chose a specific one. We often forget to step backward and analyze the tasks ahead of us and form adequate organizations, and instead, we jump onto known pathways.

Table 7.1 Variation in reflection

Furthermore, the complexity of doing things right, doing the right things and considering what is ‘right’ increases considerably when several interests are involved. Negotiations between actors are a well-known part of complex problem solving. A simple problem is solvable within the disciplines; a complicated problem connects to known collaboration among disciplines and subdisciplines, whereas a complex problem does not have a known solution and learners will have to step backward to understand the problem and to design solutions across traditional disciplinary boundaries. Thereby, meta-reflection also becomes a matter of reflecting on the boundary crossing between different disciplines in interdisciplinary projects. It becomes a meta-competency to handle interdisciplinary competencies in action, e.g., to foresee the limits of one’s own discipline, knowing who to consult to interact with other disciplines, and ensure aligned interaction with mutual benefits.

2 Interdisciplinarity and Boundary Work

Interdisciplinarity is not a subject matter, it is a process that ends up building a format of thinking. Each student has their own contribution to understanding and solving a specific problem. When students from diverse disciplines work together, they build a level of trust, and they may start consulting each other or work together outside the classroom on different subjects. Interdisciplinary collaboration among students in the same course, brings together new ways of thinking, combined elements of solutions and more global fit of an outcome (Mausoom & Vengadeshwaran, 2021).

What the dimension of tacit knowledge reminds us of is that it is important to reflect not only at the individual level, but also among peers at the team level, and not least be aware of the diversity issues. Teams consist of individuals, and it can be very hard to look through what is happening in the team among the team members, but it is essential that the team members understand both their own and each other’s perspectives. What can be beneficial to identify are many of the disciplinary and diversity factors that create boundaries. When boundaries are identified, it is much easier to establish common ground.

It is important to create a language and set of concepts in order to set common goals and be able to reflect on the process and the outcomes, and as mentioned in Chap. 5, language and linguistics acts include a multitude of symbols which is open for interpretation. That might be easier to say than do. But a language is part of the organization of the process and the application of structural competencies. What is much more complicated is overcoming the boundaries of disciplines and cultures.

The degree of interdisciplinarity is linked to the type of problem that the students are working on. As the problem becomes more complex, it will involve more actors and disciplines in both the identification and solving phases. Most of the research on interdisciplinarity is primarily focused on research, and the literature on how to deal with interdisciplinarity in education or in collaboration is limited (Everett, 2016). For research, the literature mentions three variations of interdisciplinarity: multi, inter, and transdisciplinarity (Keestra & Menken, 2016; Repko et al., 2019).

As illustrated in Fig. 7.3, a multidisciplinary approach ensures that the problems are looked at from different disciplinary angles and different discipline solutions are provided. There is an exchange of information and knowledge, but there is no real integration in the product. The interdisciplinary approach is an integrated approach and there will be a common solution in the end. The transdisciplinary approach is defined a bit differently in diverse literature, but there is general acceptance that boundaries of academia and the non-academic sector are crossed, and new knowledge will emerge. It is also a process involving new perspectives from the outside that will question own disciplinary origins and perspectives.

Fig. 7.3
A diagram of trans triple helix integration has 4 lines that start in wave formation on the left. 2 lines at the top are labeled discipline A and B. The 2 below are public, and private partner, respectively. They intertwine, and converge at the end on the right, labeled as integrated output.

Transdisciplinarity (based on Keestra & Menken, 2016)

There are other conceptualizations of the variation in the interdisciplinary approach, e.g., Klein defines a narrow and a broad interdisciplinary approach, where the narrow is characterized by a shared knowledge paradigm, while the broad is characterized by different knowledge paradigms, e.g., engineering versus humanities (Klein, 2006, 2010). However, even if it might be possible to distinguish between multi, inter, and transdisciplinarity, in practice the concepts are used in abundance, and therefore, it is an advantage to regard interdisciplinarity as an overall concept embracing a scale from multi, narrow inter and broad inter to transdisciplinary approaches.

We have to be careful with the narrow disciplinary approach. Although engineers from, for example, electronics and mechanical engineering, might find it hard to work together in systems, they do share scientific and engineering practices and cross-cutting concepts. Scientific and engineering practices include, for example, defining problems, developing, and applying models, investigations, mathematical and computational thinking, etc., and there are cross-cutting examples like cause and effect, scales, systems, and system models, please see more in Chap. 2. There are also disciplinary-specific areas within the physical sciences, life sciences, earth and space sciences and engineering technologies (Council, 2012). The narrower interdisciplinary collaboration can be related to working on an innovation system, but we have to be careful that the technological systems are based on human and societal needs, which will involve a much broader interdisciplinary collaboration.

Interdisciplinary educational models will apply more attention to cross-cutting generic and meta-competencies to bridge the different disciplines. The generic competencies can be used across domains and disciplines, but these have to be combined with meta-competencies to capture the variation in the disciplinary approaches. There is a request, in particular, for interdisciplinary teamwork competencies in various types of projects, and as an example, learning generic competencies in an interdisciplinary team of law and engineering could also be applied in groups of social sciences, humanities, and engineering (Male, 2010; Male et al., 2011).

In education, there is a need for more attention to authentic problems to ensure that students learn methods for how to deal with complex, real-world problems, such as sustainability problems. Repko, Szostak, and Buchberger focus on interdisciplinary studies and emphasize that there are a series of characteristics or skills that we need to apply in interdisciplinary collaboration, such as an entrepreneurial mind (taking risks), a love of learning (excited to learn something new), self-reflection (self-awareness of strengths and weaknesses), intellectual courage (acceptance of, and respect for, other viewpoints), and patience and empathy (active listening) (Repko et al., 2019). All these characteristics are an extension of teamwork competencies in projects, but even more advanced, and they involve deep reflections and project skills as an extended part of the generic competencies.

The presence of these characteristics differs in different contexts. One moment, it is listening, and the next moment, it is having the courage to move across boundaries and take risks. The really difficult element is learning when we are doing the right thing, taking the context into account. Maybe it is not so difficult to learn to listen and to learn to act, but the hard part is decoding the situation and applying appropriate skills in a given moment. This is the art that experts can carry out, but which novices will have to learn in a more structured way (Dreyfus, 2004).

Similar abilities can be applied to intercultural collaboration as the individual will have to step outside their comfort zone to be able to understand another perspective like understanding variation of perceptions. Or it can be graduates going into work where they have boundaries to cross as they will meet new work cultures. Interdisciplinary collaboration is linked to academia, whereas the concept of boundary is a much broader concept and can be seen in relation to complexity, which is a philosophical concept, and to systems engineering, which is much more of an engineering and production approach. Regardless of the approach, there are knowledge domains and communities, organizations, and cultures, which are to work on common goals. Many scholars use the concept of boundaries to describe an increasingly heterogenic society, which has increased its focus on developing expertise (Akkerman & Bakker, 2011).

Boundaries of domains constitute what is regarded as expertise and what is not, as Lave and Wenger clearly describe in their concept of legitimate peripheral participation in communities (Lave & Wenger, 1991; Wenger, 1999). The technological development creates the need for more specializations, and thus, there will be an increased number of smaller expert communities but still with a need to reach out to other expert communities.

For all aspects, being able to work on boundaries seems to be a common competency—no matter whether we are talking about disciplines or cultures. Although it can be argued that boundaries will always represent analytical discourses for humans to be able to talk about, to negotiate and to create identities, boundaries will also be a connecting point. Boundaries do not mean that there is a strict black/white border, but that there is a sliding transition from one site to another or as a shared space (Leigh Star, 2010). Ecotones as a concept from biology could supplement the understanding of boundaries as an area with a mixed and merged zone in between two different domains. It could be the zone between a wood and a farmer’s field, where the natural law for trees and woods is to spread the seeds to grow, while the grass field creates a counterpart by wanting to enlarge (Ryberg et al., 2021). Boundaries do not necessarily cause fights, but there might be tensions between different ways of understanding and contextualizing the same concept or action.

3 Transfer, Transformation, and Boundary Work

Boundary crossing, generic competencies, and interdisciplinary learning relate to the concept of transfer and/or transformation. Transfer is a complicated concept. The concept has multiple meanings, such as transfer from education to work or as a concept for learning. In many learning theories, learning transfer is a concept or metaphor meeting a lot of criticism from different angles. The concept signals that once things are learned, they can be transferred to other situations as replications. But if we only replicate, there will be no progress, so an understanding of transfer as replication is totally out of the question.

As introduced in Chap. 5, the social-constructivist theories emphasize that artifacts are created through the social interactions in a team. Each situation or context will be different depending on the individuals and the interactions in the group. Students can bring earlier experiences with them into a new situation, but they will never be able to replicate their learning in a new group; such a replication would have no meaning. But they can apply elements of their past experiences and knowledge and combine the learning elements to expand their learning and interaction with other group members. They can adjust and situate their knowledge and experiences together with the other members and learn how to apply their combined efforts in these new situations.

Compared to the understanding of replication, this is a significantly different approach as it is not enough to be aware of one’s own competencies; it is also necessary to analyze and understand new situations. What are the purposes? What could be a beneficial organization? Who are the other group members? What are their expectations? Which of their experiences can the group benefit from?

Hager and Hodkinson (2009) argue against using the concept of ‘“learning transfer” and think instead of learning as becoming within a transitional process of boundary crossing’ (p. 635) (Hager & Hodkinson, 2009). They argue that the concept of transfer itself signals a narrow and instrumental way of approaching learning, as has already been argued. But they also argue that the concept could misleadingly emphasize academic and educational knowledge in the transition from education to work without any considerations of the culture, interactions, organization, tasks, or visions applicable for work.

Meta-reflection and meta-competencies are necessary for the progression of learning and so that learners can apply knowledge from one area to the next. Learners can transfer some generic skills, e.g., how to handle phases in a project management process. This is a type of declarative knowledge. But each time learners are in a new situation; they will have to create a transformation process by appropriately adjusting experiences and knowledge to be recontextualized. They must learn to read the new project according to the new type of problem, the length of the project, and the composition of the team to go into a transformation process (see Fig. 7.4). The new team might be interdisciplinary or disciplinary, the collaboration with external partners might be new. Therefore, the way the students have learned to collaborate in project A will have to be reconstructed and transformed in the new project B.

Fig. 7.4
A diagram has project A on the left with 3 humans. Points include 4 to 6 students, working on narrow discipline problem. A crossed-out arrow points right, labeled transfer. An arching arrow above is labeled transformation. Project B, 10 palms depict 2 teams working together on complex S D G problem.

Transfer and transformation

For students to be able to transform their experiences into a new context, they need to learn to analyze the problem and the new situation. Reflection on previous experiences might not be enough as this very much concerns questions like: Did I collaborate right, or did I choose the right way to collaborate? What is needed to come from A to B and what have I learned? What possible collaboration strategies do I have? What possible methods do I know? To get to this level, there is a need not only to compare experiences from practice but also to compare and analyze experiences in relation to the theories.

Engeström points out that transfer and transformation take place from one activity system to another where transformation of meanings and activities takes place. The degree of variation and difference of these contexts or problems will influence the boundary crossing process and which competencies will be needed. Dohn et al. (2020) emphasize that from an activity system perspective, the goal of education (and of learning) is to facilitate students’ capacities for transfer and transformation to support ill-structured and complex problems (Dohn et al., 2020).

When learners reflect on their experiences and try to articulate these, they will never know when and where they will need these experiences again. Many different conditions will influence the need for prior experiences in new contexts: the need, the task, and the transition from idea to practice.

Carlile’s work on boundaries in product development argues for three different ways of crossing boundaries: syntactic, semantic, and pragmatic, see Fig. 7.5 (Carlile, 2004).

The transfer level concerns the transfer of known and factual knowledge. When the problem and contexts are known, it will be relevant to apply transfer as a concept to understand the learning. It is types of declarative knowledge that can be memorized. For generic skills, it can be phases in specific management systems.

The translation level concerns translation between relatively new situations but still with recognizable elements for the problem and the context. Here, there is a focus on the language and understanding of the different team members. It makes a lot of sense to bring the translation level to generic competencies as students have to learn how to create dialogues of understanding instead of cheating oneself and each other by pretending they know.

Fig. 7.5
A diagram of an inverted pyramid has transformation to the top with new understandings and practices. Layer 2 has translation of current understandings and practices. Layer 3 is transfer of existing knowledge and procedures. Actor or discipline A and B are on either side of the triangle.

Integrated/3-T framework for managing knowledge across boundaries, based on Carlile (2004)

The transformation level is a kind of pragmatic boundary crossing and concerns unknown problems and contexts in which knowledge is going to be developed. The concept of transformation indicates that it is not just to replicate existing knowledge but to adjust and understand how knowledge and experiences can be applied. Hager and Hodkinson (2009) are pointing out that transformation is a comprehensive process that includes not only awareness of what competencies the learning is bringing to a new situation but indeed the ability to understand new situations. This understanding of transformation aligns with the understanding of meta-competencies.

Carlile also reminds us that boundaries are diverse and the competencies to work on boundaries will vary accordingly. With increased novelty and innovation, there will also be a need for increased interdisciplinary collaboration and a need not only learning to transfer, but to situate, construct, and innovate new technologies as well as human collaboration.

3.1 Boundary Objects and Brokers

Wenger defined boundary objects and boundary brokers (Wenger, 1999). A boundary object is the reification, the physical expression of common goals bridging diverse communities, and Leigh Star (2010) emphasizes that boundary objects can be characterized as being a material/organizational structure with scalability as a function that allows people from different communities to work together without it being necessary to have a consensus (Leigh Star, 2010). However, the work across communities must have a purpose or a problem as starting point; otherwise, it would make no sense to work together. Star also describes boundary objects as work arrangements that are at once material and processual, e.g., project management systems.

Brokers are the humans involved from various communities who are working on a common goal and making use of the boundary objects to communicate, see Fig. 7.6. But the function of brokers is to build relationships, facilitate knowledge sharing and progress in collaboration, and to bridge and link the communities (Long et al., 2013; Neal et al., 2021).

Fig. 7.6
A Venn diagram of 2 oval shapes that converge in the center. Left, discipline A characterized by patterns of participation and reification. Right, discipline B characterized by patterns of participation and reifications. Center, brokering, negotiation of participation and boundary objects.

Brokers and boundary objects in a community of practice (based on Wenger, 1999)

For example, for interdisciplinary teams, it will mean that the problem and project serve as a boundary object and the team members might need a period at the beginning where they create a common understanding of each other’s perspectives. However, it is also the boundary object that will require negotiation among the team members. The negotiation concerns both the scientific approach and the structure of the process and the interpersonal aspects. For the brokers or the humans working on the boundaries, it is essential to be able to understand diverse perspectives. No matter whether the boundary is primary cultural or disciplinary, the openness and willingness to try to understand an opposite point of view will be essential. In this respect, meta-reflection is essential as it is not only a question of translation; it is a question of understanding other contexts to be able to grasp the meaning in a conversation.

This might not be an easy process, but students need to be exposed to the issues that they will most likely face later in their professional life and learn how to overcome diversity issues in the teams. Maybe the conflicts among team members are to be understood as disagreement in the problem-solving approach, but the individual learner might understand this as a personal conflict. If the latter is the situation, this learner will bring along a self-understanding of personal conflict strategies that might not be beneficial for scientific dispute. Therefore, reflection on, and articulation of, the experiences of both individuals and peers is required for progressing the development of generic competencies. Learning various strategies for negotiating and coping with disagreements is essential. Maybe we have to rethink the competencies the students need to learn along these lines to work as a negotiator and broker. For many years, we have talked about competencies for teamwork and collaboration, but when focusing on the process of becoming a negotiator, it becomes clearer that educators have to facilitate boundary work. Thereby, teachers can strengthen students’ abilities to use and create boundary objects and work as brokers to connect to core stakeholders.

3.2 From Management to Leadership

In the same vein, learning project management in engineering education might not be enough, and it might be that we should move the bar to leadership. The principle of reformulating generic competencies to include meta-competencies also counts for leadership. During the last 20 years, there has been a trend of including both project management and leadership in the list of competency requirements (Boelt et al., 2022). Especially in light of the requirement of new competencies along with the increasing technological and societal complexity, engineers will face the need for more future-oriented and strategic thinking (see Chap. 2).

In the UNESCO report on SDGs in education, seven more general competencies are identified: systems thinking, anticipation, normative competencies, strategic competencies, collaboration, critical thinking, self-awareness, and integrated problem solving (UNESCO, 2017). The last four of these competencies have been highlighted for a long time and are all part of the formal accreditation systems in many countries. Also, systems thinking is mentioned in some of the accreditation criteria; however, anticipation as well as normative and strategic competencies are relatively new. For example, competencies of forecast and scenario building are often applied, e.g., in the environmental and sustainability fields. Scenarios for climate change are based on projection patterns relying on chosen variables and their relations.

Such general and generic competencies are also part of leadership and important for creating visions and strategic goals. Compared to management, leadership competencies are the competencies to align the organization, to set direction and to motivate employees, whereas management is the competency to plan, set up budgets, formulate subgoals, keep deadlines, organize the process and staff, and control the progression. The management part can be carried out primarily by competencies at the generic level, whereas leadership will primarily require meta-competencies in pointing out possibilities.

Leadership and project management are far more comprehensive than described here, but the point is that engineering students do need to experience these types of competencies in education in order to be prepared for work.

The scaling of projects from discipline projects to interdisciplinary projects in the curriculum (see Chap. 6) will allow students to experience the variation in project processes and project management. A single project in a course will not develop leadership competencies as this really requires a complex situation involving several disciplines and possible stakeholders.

4 Creating Learning Trajectories as a Lifelong Learning Strategy

Lifelong learning has been on the agenda for the last 30–40 years. In Europe, first it was a question of getting the formal education system to offer professional master educations part-time for employees. During the last ten years, this approach has to some degree changed to offering micro-credentials, which employees or learners can apply in different ways for their own competency development. Therefore, the focus has changed from getting institutions to offer educations to adults, to letting the responsibility for lifelong learning be an individual matter. Educational institutions then support individual learning pathways by making minor educational course credentials available.

Being able to create and handle individual learning trajectories can be seen as a new concept of lifelong learning. Learning trajectories are a much broader concept that is based on the concept of personal learning and have individual flexibilities in the creation of one’s own competency development. Learning takes place in many situations and the individual learner must be able to advance learning based on work in different networks and groups in both formal and informal settings. The individual must be able to develop their own professional and organizational competencies, both to assimilate knowledge to existing frameworks and to accumulate, transfer or transform learning from one context to another, and from one conceptual understanding to a new one. Accumulating, transferring, and transforming knowledge and practices are also about being able to choose strategies, methods, and techniques for specific situations.

Therefore, the awareness of learning and of the progression and combination of generic competencies—both individually and in teams—will be a core in future engineering competencies, and it should be addressed in education. Besides, this is also what companies are asking for.

Both the variation theory and Vygotsky’s zone of proximal development theory point to the fact that the learner remains within prior developed schema’s for learning, if there is nothing new in the learning situations (Vygotsky, 1978). There needs to be a balance between what is known and the challenge of the unknown. If the learner only meets totally new unknown challenges and has no experiences, it will be too difficult to solve the task and then frustration arises, and motivation might decrease proportionally. It would be like asking an English language student to develop a piece of software or write an essay in French. Both tasks would present totally unknown languages to the student, although there might be more transferable knowledge in the French language case than in the software case.

The same applies to the transfer and transformation of generic competencies. If an engineering student has never applied or gained knowledge of methods for user involvement, there is nothing they can transform to a new situation. But as soon as the learner has had their first experience with how to interview actors and methods of user involvement, there is a potential for developing these competencies by transformation from one project to another. Similarly, there is potential for the development of, for example, team skills and project management skills.

However, it is not only a matter of ensuring progression of practice experiences. The new trend of offering digital micro-credentials is in line with the digitalization agenda and the notion that university degree programs should become more flexible. Perhaps in this policy shift, the learner has been forgotten. Perhaps there has been too much focus on developing knowledge resources without considering their integration in various learning paths. It is however the individual learner, who participates in different communities or projects, who are to select and combine available micro-credentials to create his or her own learning trajectory.

Also, in cases in companies where engineers participate in project after project, there is a requirement to create progress in capacity building. But if the learner or the team has had a tacit or non-articulated collaboration, how can the individual then develop his or her understanding and competencies based on this collaboration?

It is a core aspect of learning to create individual transfer or transformation of individual competencies achieved in a team by understanding the task, understanding the individuals and their competencies, having the knowledge of how to design work processes aligned to the task, and being able to reflect and negotiate during the process.