1 Introduction

We invite you to make changes in your engineering programs.

We acknowledge the many challenges facing humanity and believe that engineers have a particular responsibility to act and create mitigations, if not solutions. In our writing, we have emphasized the importance of broader education and providing agency for students, and we recognize that implementing such changes can be difficult when the root causes of the problem are not clearly identified. In addition, we live in paradigms that make it hard to make and accept changes. Thus, incentives or, in some cases, dramatic losses may motivate people to make the change. We are really in need of a paradigm shift. We urge you to participate in creating this shift.

We hope that this book will serve as a wake-up call, highlighting the urgent need for change. To that end, we have summarized the key changes required, which are elaborated on in the preceding chapters. These chapters contain in-depth discussions and examples. The ten points listed here are not independent but rather form a network of intellectual tasks that are complementary and urgent.

In Chapter 1, we identified four key challenges that must be addressed in the future development of engineering education. The challenges are.

  • A sociocultural-environmental challenge, which requires us to embrace diversity and ethics.

  • The sustainability challenge, which necessitates managing resource flows and ensures quality of life for future generations.

  • A digital challenge, which involves aligning engineering education with emerging engineering disciplines and digital platforms, including AI.

  • An employability challenge, which entails educating candidates who can adapt to changing the work and market conditions and serve as agents of social change.

In addition, we summarize three essential mindset shifts that must be integrated into engineering education to address these challenges. These mindsets include (a) an interdisciplinary future mindset that emphasizes design, systems, and complexity, (b) an innovative interdisciplinary learning mindset that matches evolving workplace needs, and (c) a recognition that disciplines are being transformed through digital engineering, which we must embrace.

We expand on each of these themes below (Fig. 12.1).

Fig. 12.1
An illustration. A student engineer in a given social-cultural-environmental context is influenced by 3 mindsets, namely, the future interdisciplinary, interdisciplinary learning, and disciplines and digitization.

Conceptual framework for mindsets

Future Interdisciplinary Mindset

2 Engineering Curricula Should Be Design Oriented and Interdisciplinary, with a Focus on Solving Open-Ended, Complex, Human Challenges

All human systems are open ended, complex systems. There are no single answers that we know of, but different solutions, many of which are required. In addition, there is a danger of reducing complex issues into complicated ones and attempting to take on parts of the issue through disconnected solutions. Reductionism is tempting and is successful in science. But this is the wrong approach when dealing with human challenges. Students learn to solve exercises, each of which might be addressing a small piece of a big puzzle. This creates a methodology that is difficult to unlearn or even to question.

Most science is built on the Newtonian approach of cause and effect and assume time reversal for many of their observed phenomena. Unfortunately, complexity defies time reversal and what happens in human societies does not occur again, although sometimes it feels like déjà vu. Realizing that makes our hindsight interesting but not necessarily useful. Students need to understand and classify the different human systems and not confuse our ability to fix complicated systems, like electromechanical ones, with trying to fix a complex traffic snarl on a bridge using similar approaches. Students must keep in mind that most human challenges cannot be reduced to complicated systems challenges.

Addressing human challenges requires systems thinking and students should learn systems mapping and analysis. Design is the method to define and create innovative solutions. Design methodologies must be embedded in all courses. Thus, the design process becomes second nature. The technique of foresight should also be part of all engineering curricula. Both design and foresight are easy to introduce in engineering courses and can create enjoyable interchanges that facilitate learning and sociability.

Our mindsets live in paradigms which stick around for a long time. To be innovative, we need to tame these paradigms and question their validity. Students must be taught to be critical thinkers, open for diverse opinions and ideas. Our heuristics are entrenched in our mental models and, nowadays, they are extended by social networks and artificial intelligence. To be productive and social, we need to keep heuristics in check, and students, working in teams, need to call on each other when a heuristic seeps in.

3 Engineers Must Adopt Sociocultural-Environmental and Innovation Mindsets

Design is a problem-solving mindset. Students must be very good at applying the design process and implementing innovation. Design also serves as a process to identify the problem and the stakeholders. We have argued that engineers need to learn to become holistic problem solvers and achieve understanding of the impact of technology on humans and on nature. Ethics and sustainability need to be integrated within human needs as part of the engineering design process.

Engineering education needs to use science as a foundation but must move beyond the theoretical mode and include real-world challenges and their contexts. This requires deep understanding of the problem and interdisciplinary knowledge. The curricula need to include generic and meta-competencies to help students to cross the disciplinary boundaries and to participate on interdisciplinary teams.

We also need to be cautious not to consider markets and jobs as the main drivers of knowledge. Knowledge and pedagogy must not be squeezed to fit the cast of economics. Education should not be reduced to a business model. Do we educate students to obtain the best salaries or to make them better citizens? Do we want them to make the best gadgets or the best solutions?

Engineering pedagogy must shift to incorporate not only technical skills, and the design of well-defined technical problems, but also to give the students challenges that require them to grapple with complex problems. Learning how to design and implement complicated devices or artifacts is not enough for the twenty-first century engineer. The human context is critical for every design. A water purification plant needs to be understood in its social context, whether it is in a developing country or a technology-rich country. How to maintain such a plant must be part of the design process. Context is not easy to design for and interactions across cultures will be required.

Consequently, we need interdisciplinary learning, a second mindset shift.

4 Interdisciplinary Knowledge is the Cornerstone for Solving These Complex Human Challenges—Excellence in a Single Discipline Must not Be the Only Focus

There is tension between the importance of disciplines and their boundaries. Keeping the institutional cultures intact seems to be desired. In addition, there is tension between theory and practice as well as the degree to which students should incorporate human needs in their analysis. Things have shifted enough, and we cannot teach the content we learned many years ago, and with similar pedagogy.

Basically, there is tension in creating the new direction of engineering education. Should we hold to the content that built most of our civilization, or should we look into the future for insights. Changes are here, and we need to cope with some undesired outcomes of the digital technologies and integrate artificial intelligence wisely. AI will enable different skills and may render some skills obsolete.

We need to keep the essence of the critical liberal arts education and uphold societal values that are aligned with sustainability and human thinking. Design, systems thinking, and priority on problems might enable strategies and content for new directions for higher education. These will also engage the universities with society and create content that is aligned with the realities of interdisciplinary knowledge and competencies.

Interdisciplinary Learning Mindset

5 Learning Environments Must Facilitate Learning as a Social Process

In this book, we advocated that learning is a social process that enables engineering students to become effective citizens.

Learning as a social process involves culture and systems. The learning system and the pedagogies create social values by using different learning strategies, including digital ones. The curriculum contains content knowledge as well as pedagogy, which form a rich intellectual environment that influences students’ knowledge and competencies.

Throughout the book, we emphasized active learning, inquiry learning, project, and problem-based learning and design-based learning. These learning strategies are team-based and collaborative methodologies. As engineers work in and on systems, the individual engineer needs to work, collaborate, and communicate within teams. A significant part of these new learning approaches will happen beyond the classroom.

From learning theories, different active learning methodologies, and different institutional practices, it is clear that there is no single successful method for educating students, nor in how to structure the curriculum or how to organize or frame students’ learning processes. Variation is a key concept in terms of the basic learning approaches. Pedagogies and curriculum constructions vary as they should. With these variations we pay attention to transparency and reflection.

By transparency we mean that students are informed about the expectations of the new teaching and the type of learning experiments or methodologies to be used. Reflection is the opportunity for students to indicate their preference to a particular learning and how it was achieved. This feedback loop is essential to understand the effectiveness of the new designs and the appropriateness of the methodologies. We must keep the learner at the center of our attention.

6 Experiences, Variation, and Reflection Should Be Practiced Throughout the Curricula

The sociocultural experience is a fundamental platform for building knowledge. The role of these experiences is to influence students’ values, which influence their capacity to learn. In general, students base their knowledge on their already existing conceptual frameworks and their experiences. A learner’s previous experiences with the world and life, physical, social, or imaginary, represent a conceptual frame reference for giving meaning to new information.

The way we learn and the experiences form our identities, values, and, of course, create our learned competencies. More student-centered curricula in engineering education should apply a variation in the learning methodologies ranging from lectures to projects, taught exercises, and self-guided ones. In addition, these variations include different levels of design projects, starting from more narrow problems to open-ended complex problems. Also, different student interactions would include small teams to large ones, and even a team of teams working on the same problem. Such experiences create a wealth of learning opportunities, which the student will carry with them throughout their career. So, variation and reflection are critical components of future learning environments.

Variations go together with reflections and comparisons of gained experiences. However, such reflections need facilitated processes. With such processes, students can achieve an understanding of the skills and competencies they have learned in the various projects and other learning environments. Without comparing and reflecting, variation may cause confusion and negatively affect competency development.

It is important to note that with facilitated reflection, students can learn generic competencies such as collaboration, communication, organization, leadership, and management. These generic competencies are transferrable to different settings and students need to learn how to make such transfers. But transferring knowledge is not enough. We seek transformational knowledge. As the systems are becoming more complex, the commonality of similarity decreases. Transformation demands more than transfer, as knowledge is to be embedded and invested in practice and implies the ability to select, adapt and develop one’s competencies. In other words, meta-competencies are needed.

The learning of transformation of generic competencies implies the learning of meta-competencies, and the learning of how to develop generic competencies, for both students and academics. Guided learning is a must to achieve these goals.

7 Students and Teachers Need Generic and Meta-Competencies to Work Across Interdisciplinary Boundaries

Interdisciplinarity is a must for complex problem solving and joining an interdisciplinary collaboration is not an easy path. Depending on the degree of interdisciplinarity, from a narrow one, sharing different knowledge paradigms, to a broad one across engineering and humanities or social sciences, the collaboration will face different and sometimes significant challenges.

In narrower interdisciplinary approaches, in which systems approaches can be used, the collaboration might face manageable challenges. But in a broad interdisciplinary collaboration, challenges might be severe, and participants from different disciplines might have different terms and jargons causing huge difficulties in understanding each other.

Having clear and transparent boundary objects and facilitating the learning by using generic and meta-competencies are good measures to crossing the interdisciplinary boundaries. For example, generic competencies such as collaboration learned in disciplinary context can be transformed into an interdisciplinary context by analyzing the problems, the context, the needs, and the difficulties in understanding the specific languages belonging to the different disciplines. These, of course, require significant planning and guidance.

The facilitation of generic and meta-competencies needs brokers who have an interest in transcending disciplinary boundaries and have the ability and conditions to do so. Brokering is hard work. It is not at all easy to enter a new field of epistemological understandings and create as much common ground to ensure a platform for collaboration and at the same time maintain the needed diversity to address the complex problems. It is not a question of merging disciplines, but instead to create an environment for constructive collaboration across boundaries.

Nevertheless, we also need to remember that each student’s learning journey is unique and we need learning environments that encourage students to build their own learning and career trajectory.

8 Students Must Be Encouraged to Create Their Own Lifelong Learning Trajectories

Nurturing students’ motivations and giving the students agency to create their own career directions is of utmost importance. In some universities, students learn how to co-create a course or a learning path in collaboration with others and on their own. But this might be easier said than done, as some disciplines have a significant number of required courses. In addition, students often have significant course options to choose from. Furthermore, students need to learn how to direct their own learning, both individually as well as within the collaborative teams.

When placing students in the center of the learning process, there is also a need for the faculty to learn to orchestrate students’ learning, both in formulating the curriculum through learning outcomes that have broad methodological terms, and in managing the students’ abilities to perform.

Facilitating or advising learning for an individual or a team is very different from lecturing or downloading information. Academics need to learn different skills. Practicing facilitation of learning does not come easily. Most teachers perfect lecturing and providing homework. These skills need to be modified to the new system of asking questions that guide learners. Questions like ‘what-if’ and ‘what happens if,’ and ‘why,’ and give parallel examples to work on, need to be practiced.

This becomes even harder when guiding students working on complex problems where it is not possible to know all the elements of the system nor to understand their relationships. Practicing such interactions between the instructor and the group may take some time, but it is doable, especially when the instructor encourages peer-to-peer learning.

This will also require that curricula have touch points where students from different disciplines and instructors, who have different backgrounds, work together. Co-teaching can be fun and exciting when some faculty confess that they ‘do not know’. This brings a level of humility and closeness between the members of the working team.

Fortunately, this is the right time to practice such notions. In fact, there has never been a better time to undertake the task to integrate student-centered activities with active learning methodologies. In engineering education, variations of project-based learning are one of the answers to the challenges of changing the curriculum. Today, students have access to the world’s knowledge at their fingertips. Now, what they need to learn are the process skills of complex problem solving and how to realize that these are open ended, with no unique solution.

Disciplines and Digitalization

9 Disciplines Must Embrace Interdisciplinarity

We have argued earlier that deep learning, by digging into a particular discipline, must be combined with a learning strategy to increase the ability of students to relate to, and connect with, other disciplines in a meaningful way. This is not a question of reducing students’ learning of core technical competencies; rather, it is to create synergy in the learning process, so that students will experience the inevitable interaction between technical skills and contextual application.

Therefore, a dialogue between what is disciplinary and what is interdisciplinary is needed. To foster this dialogue, it is important that potential tensions are acknowledged and brought up front. Along the same line, already existing strategies to handle the T-shape of the future engineer have to be revisited. Is interdisciplinarity seen as a matter to integrate into the discipline from other disciplines? Is interdisciplinarity seen as an incentive to design new disciplines by merging components from different disciplines? In this book we have suggested a more collaborative and flexible approach to face the complex and ever-changing problems ahead.

Therefore, we do not believe that there is a contradiction in the specialization versus the generalization. We believe that they are complementary parts working to address complex systems. We do not argue in favor of replacing or reducing the core of each discipline, but we recommend a restructuring and recontextualizing of the disciplines through design-oriented curricula focused on creating an understanding of complex problems through systems analysis.

10 Digitalization is Changing Our Earning Environments and the Engineering Profession!

Digitalization is changing learning and the practice of the disciplines, through several shifts:

  1. 1.

    Digital tools are transforming learning.

  2. 2.

    Digital engineering is transforming engineering practice, e.g., digital twins.

  3. 3.

    Artificial intelligence, and other technologies, are transforming everything!

On the learning dimension, we need to merge the digital communication tools with active learning. Distance learning is not the norm at most campus-based universities, but the use of blended modes and flipped classrooms will become dominant. Thus, the learner is met with new challenges of organizing learning individually, as well as collaboratively with others by face-to-face interactions, as well as digitally, as in the workplace.

The pandemic has hastened the adoption of online learning in most universities. Students are seeing the advantages of moving through the learning materials at their own pace, rather than at a pace set by lectures. This flexibility is yet to be taken advantage of; it fits neatly in a project-based curriculum where students learn as required, rather than just in case. It also hastens the adoption of flexible learning in the workplace, supporting an apprenticeship approach where students work and learn simultaneously.

Digital engineering is also transforming engineering practice. Digital twins are a prime example, enabling large engineering projects to be modeled in space and time dimensions. Both designers and constructors can use such models to observe system behavior, including the sequence of construction—build once digitally and a second time materially. Such models can then be used for long-term operations and maintenance of complex engineering artifacts (infrastructure, aircraft, transport systems, telecommunication systems, electricity grid, etc.).

These models are the culmination of engineering software developments that started in the 1950s. These early models were analysis focused and simulations of various kinds. As time has progressed, models have become data-integrated, using geographical information systems (GIS) and other data sources. Consider all the various ways in which analysis tools are now integrated with Google Maps, for instance.

The challenge for engineering educators is to balance the time spent on learning the fundamental engineering principles versus the time spent on applying the principles using powerful software tools. This also requires educators to keep their computing skills up to date. In addition, educators need to design effective learning activities (interdisciplinary projects) where students use the tools as well to verify that the answers are meaningful, based on fundamental principles as well as societal needs.

It is important to discuss how to address complex problems and system thinking in a blended engineering curriculum that utilizes digital tools. As we face a large number of unsolved challenges, it is urgent that higher education create strategies to educate students who can contribute to the future solutions.

The interaction between society and academia is one of the core elements in terms of letting students identify societal problems or interact with society in other ways. Students learn how to identify relevant problems and propose different path to address them. Through such challenges, students develop capacity to determine what kind of scientific knowledge they need to learn. Students’ voices should be taken seriously to modify the content of the curriculum.

Critical thinking becomes a necessary element embedded in both the process of analyzing and solving problems. With a focus on problems or challenges, students will need to learn to ask questions and seek paths to define the core of the problem (i.e., the root cause), determine the stakeholders and how they affect the process of creating solutions.

With AI and its encroachment on our lives, learning to critically endorse it and utilize it become critical skills. Group work with AI can be beneficial. Integrating AI with the curriculum is an urgent task and it is essential to include ethical and cultural considerations.

The OpenAI platform interacts in a conversational way with people, which makes it important, as it has easy-to-use, advanced technologies such as ChatGPT. This chat.openai application offers answers that might simplify issues and attempt to reduce complex issues into complicated or even simple ones. But it also creates quick and interesting answers, which could be compelling. This is the beginning of a significant change where AI takes the helm in creating information that, on the surface, looks useful and true. Through human chatting and directing the AI, the machine obtains context and possibly takes thoughtful directions. Students should be encouraged to work with the machines but at the same time they need to be taught to be critical thinkers and use discussions and reflections to harvest the AI products in ethical and productive means.

Context is not to be taken lightly, AI is not good, yet, in integrating context. Students need to understand their ecosystems and learn how their disciplinary knowledge relates to the broader context, and to the overall systems. But we must work in directions of embracing AI as it is there to be developed further. Connections among parts of the systems, their feedback loops and time delays must be part of the analysis and students must become critical learners and question what AI can do.

The intrusion of AI adds new layers of complexity and makes the future harder to analyze. Although unraveling the future is a hopeless pursuit, AI can help in such searches, but it must be used with caution and be tested against human ethics and cultural norms. For a given challenge, students must decipher multiple futures to navigate complexity and co-work with the machines to obtain insights and weak signals that help in creating scenarios for different futures.

In a longer perspective, there is no doubt that the disciplines and the learning will change, and we will look into new knowledge patterns based on big data and AI.

A logical consequence is that digitalization will be integrated into the curriculum already at early stages. For the learning and communication technologies, this already exist in blended learning forms. For the emergent technologies such as big data and AI, we need strategies and not at least faculty who can help facilitating a critical discourse.

And in these more complex learning environments, we need effective change leaders who can be instrumental in facilitating the paradigm shift.

11 A Call to Action—Each Institution Must Find Its Own Way

Each of us must address these lessons at our own institutions in a way that matches the unique culture and objectives of that institution. There are lessons that we learn from each other, but their application at our own institution is a unique journey. Institutions do have various curricula practices; however, each institution needs to have strategies and plans for how they most efficiently respond to these challenges.

The lessons in this book can be applied as a framework. We must combine the future mindset, which is a more holistic approach to learning of knowledge and competencies, with interdisciplinary learning and with the change of the disciplines by digitalization of various kinds.

But we need change leaders and early adopters. Most change has taken place in certain courses, but we need a systemic approach with appropriate planning. How do we scale up from the changes made in a few courses to curriculum restructure on a program scale? Chaps. 9, 10, 11 provide examples of changes made at our institutions.

Educational leadership is essential if we want to change curricula as a whole. We need explicit visions and direction, and we need to recognize educational leadership and development in the same way we recognize research. We need to be willing to take risks as we are in the middle of the climate battle, and we need knowledge and competencies to win that battle.

No matter which practices and strategies you might have, we want to stress that it is the faculty who should drive the change and you need to identify the faculty who can lead these changes and work collaboratively with other faculty. We have also emphasized that faculty are driven by values and identities and change needs to take the point of departure from the current paradigm. If there is no belief or no trust in new learning systems, you need to first plan to create trust.

We hope that this book has inspired you to make changes at your institution to address the challenges of the twenty-first century. We would be delighted to hear about your approaches and adventures.