Skip to main content

Introduction

  • Chapter
  • First Online:
Adaptable Design

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

Abstract

The market competition requires manufacturing enterprises to be responsive and responsible in developing products for better product functionality, quality, features, environmental friendliness, and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Akao, Quality Function Deployment: Integrating Customer Requirements into Product Design (Productivity Press, Cambridge, MA, USA, 1990)

    Google Scholar 

  2. K.K. Ali, M.S. Saed, Product Design for Modularity (Kluwer Academic, Norwell, MA, USA, 2002)

    Google Scholar 

  3. L. Alting, J. Jorgensen, The life cycle concept as a basis or sustainable industrial production. Ann. CIRP 42(1), 163–167 (1993)

    Google Scholar 

  4. L. Alting, Life-cycle design of products: a new opportunity for manufacturing enterprises, in Concurrent Engineering: Automation, Tools and Techniques, ed. by A. Kusiak (Wiley, 1992), pp. 1–17

    Google Scholar 

  5. Y. Altintas, Manufacturing Automation (Cambridge University Press, 2000)

    Google Scholar 

  6. J.S. Arora, Introduction to Optimum Design (McGraw-Hill, New York, NY, USA, 1989)

    Google Scholar 

  7. A. Bernard, A. Fischer, New trends in rapid product development. Ann. CIRP 51(2), 635–652 (2002)

    Google Scholar 

  8. G. Boothroyd, P. Dewhurst, Design for Assembly: A Designer’s Handbook (Boothroyd Dewhurst Inc., Wakerfield, RI, USA, 1983)

    Google Scholar 

  9. G. Boothroyd, P. Radovanovic, Estimating the cost of machined components during the conceptual design of a product. Ann. CIRP 38(1), 157–160 (1989)

    Google Scholar 

  10. G. Boothroyd, Product design for manufacture and assembly. Comput. Aided Des. 26(7), 505 (1994)

    Article  Google Scholar 

  11. G. Boothroyd, P. Dewhurst, W. Knight, Product Design for Manufacture and Assembly (University of Rhode Island, Marcel Dekker Inc, New York, 1994)

    Google Scholar 

  12. B. Bras, J. Emblemsvag, Activity-based costing and uncertainty in design for life-cycle, in Design for X: Concurrent Engineering Imperative, ed. by G.Q. Huang (Chapman & Hall, London, 1995)

    Google Scholar 

  13. Y. Chen, Y. Han, P. Liu, J. Huang, N. Bao, P. Gu, Modeling and design method of five roller printing system without solvent. J. Eng. Des. 21(1)

    Google Scholar 

  14. Q. Cheng, Y. Guo, Z. Liu, G. Zhang, P. Gu, A new modularization method of heavy-duty machine tool for green remanufacturing. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 232(23), 4237–4254 (2018)

    Article  Google Scholar 

  15. G. Chryssolouris, Flexibility and its measurement. Ann. CIRP 45(2), 587–588 (1996)

    Google Scholar 

  16. D. Clausing, Total Quality Development (ASME Press, New York, USA, 1994)

    Google Scholar 

  17. Y. Collette, P. Siarry, Multiobjective Optimization: Principles and Case Studies (Springer, 2004)

    Book  Google Scholar 

  18. J. Corbett, P.A. McKeown, Nanotechnology: international developments and emerging products. Ann. CIRP 49(2), 523–546 (2000)

    Article  Google Scholar 

  19. K. Dehnad, Quality Control, Robust Design, and the Taguchi Method (Springer, 1989)

    Book  Google Scholar 

  20. G.E. Dieter, L.C. Schmidt, Engineering Design, 5th edn. (McGraw-Hill, New York, NY, US, 2012)

    Google Scholar 

  21. J. Dixon, C. Poli, Engineering design and design for manufacture. Field Stone, St Paul, MN, USA (1995)

    Google Scholar 

  22. Z. Dong, Design for automated manufacturing, in Concurrent Engineering: Automation, Tools, and Techniques, ed. by Kusiak (Wiles, New York, NY, USA, 1993), pp. 207–234

    Google Scholar 

  23. X. Du, J. Jiao, M. Tseng, Architecture of product family: fundamentals and methodology. Concurr Eng: Res Appl 9(4), 309–326 (2001)

    Article  Google Scholar 

  24. H.A. ElMaraghy, S. Chen, A general model for mechanical design. Ann. CIRP 39(1), 111 (1990)

    Article  Google Scholar 

  25. G. Erixon, A. Von Yxkull, A. Arnstrom, Modularity: the basis for product and factory reengineering. Ann. CIRP 45(1), 1

    Google Scholar 

  26. W.J. Fabrycky, B.S. Blanchard, Life-Cycle Cost and Economic Analysis (Prentice Hall Inc., New Jersey, 1991)

    Google Scholar 

  27. V. Fey, E. Rivin, Innovation on Demand: New Product Development Using TRIZ (Cambridge University Press, Cambridge, UK, 2005)

    Book  Google Scholar 

  28. V. Fey, E. Rivin, The Science of Innovation: A Managerial Overview of the TRIZ Methodology (TRIZ Group, USA, 1997)

    Google Scholar 

  29. D. Fletcher, R. Brennan, P. Gu, A method for quantifying adaptability in engineering design. Concur Eng-Res Appl 17(4), 279–289 (2009)

    Article  Google Scholar 

  30. A. Friedman, The Adaptable House (McGraw-Hill, 2002)

    Google Scholar 

  31. J. Gershenson, K. Ishii, Life cycle serviceability design, in Concurrent Engineering: Automation, Tools, and Techniques, ed. by A. Kusiak (Wiles, NY, USA, 1993), pp. 363–384

    Google Scholar 

  32. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley Professional, 1989)

    Google Scholar 

  33. J.P. Gonzalez-Zugasti, Otto, A method for architecting product platforms. Res. Eng. Des. 12(61–72) (2000)

    Google Scholar 

  34. P. Gu, M. Hashemian, S. Sosale, An integrated modular design methodology for life-cycle engineering. Ann. CIRP 46(1), 71–74 (1997)

    Google Scholar 

  35. P. Gu, M. Hashemian, A.Y.C. Nee, Adaptable design. Ann. CIRP 53(2), 539–557 (2004)

    Google Scholar 

  36. P. Gu, A. Kusiak (eds.), Concurrent Engineering (Elsevier, Oxford, UK, 1993)

    Google Scholar 

  37. P. Gu, Adaptable design using bus system, in Proceedings of the 10th International Manufacturing Conference in China (IMCC2002), Panel-2 158, Xiamen, China, Oct. 11–12 (2002), p 11.

    Google Scholar 

  38. P. Gu, S. Sosale, Product modularization for life cycle engineering. J. Robot. CIM 15, 387–401 (1999)

    Google Scholar 

  39. P. Gu, Recent development in design theory and methodology research, in Proceedings of International Conference on Manufacturing Sciences (Wuhan, China, 1998), pp. 21–26

    Google Scholar 

  40. M. Hashemian, P. Gu, A function representation scheme for conceptual mechanical design, in Proceedings of the11th International Conference on Engineering Design, ICED97, vol. 2, issue 1 (1996), pp. 311–314

    Google Scholar 

  41. Y. Hatamura, T. Nagao, M. Mitsuishi, M. Nakao, Actual conceptual design process for an intelligent machining center. Ann. CIRP 44(1), 123 (1995)

    Google Scholar 

  42. F. Hillstrom, Applying Axiomatic design to interface analysis in modular product development. Adv. Des. Autom. ASME 69(2), 363 (1994)

    Google Scholar 

  43. A. Jose, M. Tollenaere, Modular and platform methods for product family design: literature analysis. J. Intell. Manuf. 16(3), 371–390 (2005)

    Article  Google Scholar 

  44. Y. Koren, S. Hu, P. Gu, M. Shpitalni, Open-architecture products. Ann. CIRP 62(2), 719–729 (2013)

    Google Scholar 

  45. L.K. Keys, System Life Cycle Engineering and DFX. IEEE Trans. Components Hybrids Manuf. Technol. 13(1), 83–93 (1990)

    Article  Google Scholar 

  46. F. Kimura, H. Suzuki, Representing background information for product description to support product development process. Ann. CIRP 44(1), 113 (1995)

    Google Scholar 

  47. F. Kimura, H. Suzuki, A CAD system for efficient product design based on design intent. Ann. CIRP 38(1), 149 (1989)

    Google Scholar 

  48. Kirschman C, Fadel GM, Almonte CC (1996). Classifying Functions for Mechanical Design. ASME Design Engineering Technical Conferences and Computers in Engineering Conference

    Google Scholar 

  49. F. Klocke, G. Eisenblatter, Dry cutting. Ann. CIRP 46(2), 519–526 (1997)

    Google Scholar 

  50. W.A. Knight, Design for manufacture analysis: early estimates of tool costs for sintered parts. Ann. CIRP 40, 131–134 (1991)

    Google Scholar 

  51. Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, H. Van Brussel, Reconfigurable manufacturing systems. Ann. CIRP 49(2), 527–540 (2002)

    Google Scholar 

  52. F.L. Krause, T. Kiesewetter, S. Kramer, Distribute product design. Ann. CIRP 43(1), 149 (1994)

    Article  Google Scholar 

  53. F.L. Krause, A. Ulbrich, R. Woll, Methods for quality driven product development. Ann. CIRP 42(1), 151 (1993)

    Article  Google Scholar 

  54. J.P. Kruth, M. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping. Ann. CIRP 47(2), 525–540 (1998)

    Google Scholar 

  55. A. Kusiak, Concurrent Engineering: Automation, Tools, and Techniques (Wiley, NY, USA, 1993)

    Google Scholar 

  56. R.G. Landers, B.K. Min, Y. Koren, Reconfigurable machine tools. Ann. CIRP 50(1), 269–274 (2001)

    Google Scholar 

  57. K. Lee, Principles of CAD/CAM/CAE (Addison-Wesley, 1999)

    Google Scholar 

  58. S.C. Lu, M. Shpitalni, R. Bar-Or, R. Gadh, Virtual and augmented reality technologies for product realization. Ann. CIRP 48(2), 471–496 (1999)

    Article  Google Scholar 

  59. O. Maimon, D. Braha, On the complexity of the design synthesis problem. IEEE Trans. Syst. Man Cybern. Part A 26(1), 0–151 (1996)

    Google Scholar 

  60. M.D. Marks, C.F.K. Eubanks, Life-cycle clumping of product designs for ownership and retirement (1993).

    Google Scholar 

  61. M.V. Martin, Design for variety: a methodology for developing product platform architectures (2000).

    Google Scholar 

  62. T. Masuzawa, State of the art on micromachining. Ann. CIRP 49(2), 473–488 (2000)

    Article  Google Scholar 

  63. A.J. Maupin, L.A. Stauffer, A design tool to help small manufacturers reengineer a product family, in Proceedings of DETC, DTM-14568 (ASME, 2000)

    Google Scholar 

  64. N. Maussang, P. Zwolinski, D. Brissaud, Product-service system design methodology: from the PSS architecture design to the products specifications. J. Eng. Des. 20(4), 349–366 (2009)

    Article  Google Scholar 

  65. J. Meijer, K. Du, A. Gillner, D. Hoffmann, laser machining by short and ultrashort pulses. State of the art and new opportunities in the age of the photons. Ann. CIRP 51(2), 531–550 (2002)

    Google Scholar 

  66. K.G. Mertens, E. Greve, D. Krause, M. Meyer, Reviewing the intellectual structure of product modularization: toward a common view and future research agenda. J. Product Innov. Manage. (2022)

    Google Scholar 

  67. M.H.R. Meyer, Product platforms in software development. Sloan Manage. Rev. Fall 61–74 (1998)

    Google Scholar 

  68. P.J. Newcomb, Implications of modularity on product design for the life cycle, in Proceedings of the 1996 ASME Design (1996)

    Google Scholar 

  69. P. O’Grady, R.E. Young, Issues in concurrent engineering systems. J. Des. Manuf. 1, 27–34 (1991)

    Google Scholar 

  70. G. Pahl, W. Beitz, Engineering Design: A Systematic Approach (Springer, Berlin, Germany, 1988)

    Google Scholar 

  71. Q. Peng, Y. Liu, J. Zhang, P. Gu, Personalization for massive product innovation using open architecture. Chin. J. Mech. Eng. (2018). https://doi.org/10.1186/s10033-018-0239-0

    Article  Google Scholar 

  72. J. Peters Poli, D. Van Campenhout, Manufacturing oriented and functional design. Ann. CIRP 37(1), 153 (1988)

    Article  Google Scholar 

  73. B. Prasad, Concurrent Engineering Fundamentals (Prentice-Hall, Englewood Cliffs, NJ, USA, 1996)

    Google Scholar 

  74. G. Pritschow, Y. Altintas, F. Jovane, Y. Koren, M. Mitsuishi, Open controller architecture—Past, present and future. Ann. CIRP 50(2), 463 (2000)

    Article  Google Scholar 

  75. K.P. Rajurkar, D. Zhu, J.A. McGeough, J. Kozak, A. De Sikva, New developments in electrochemical machining. Ann. CIRP 48(2), 567–580 (1999)

    Article  Google Scholar 

  76. A. Raouf, M. Ben-Daya, Flexible Manufacturing Systems: Recent Developments (Elsevier Science, 2005)

    Google Scholar 

  77. J. Sand, P. Gu, G. Watson, HOME: house of modular enhancement for product modularization. Concurr. Eng. Res. Appl. 10(2), 153–164 (2002)

    Article  Google Scholar 

  78. M. Santochi, G. Dini, F. Failli, Computer aided disassembly planning: state of the art and perspectives. Ann. CIRP 51(2), 509–527 (2002)

    Article  Google Scholar 

  79. G. Seliger, Product innovation—industrial approach. Ann. CIRP 50(2), 425–443 (2001)

    Google Scholar 

  80. R. Setchi, N. Lagos, Adaptive, responsive and reconfigurable product support for future manufacturing. Int. J. Innov. Comput. Inf. Control 4(3), 615–625 (2008)

    Google Scholar 

  81. Y. Shimomura, S. Tanigawa, H. Takeda, Y. Umeda, T. Tomiyama, Functional evaluation based on function content, in Proceedings of ASME Design Engineering Technical Conference (ASME, California, DETC/DTM-1532, 1996)

    Google Scholar 

  82. Z.D.W. Siddique, D. Rosen, Product family configuration reasoning using discrete design spaces, in Proceedings of ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Baltimore, Maryland, 2000)

    Google Scholar 

  83. T.W. Simpson, J.R.A. Maier, F. Mistree, Product platform design: method and application. Res. Eng. Design 13(1), 2–22 (2001)

    Article  Google Scholar 

  84. D. Singh, P. Gu, Product life cycle serviceability analysis for supporting engineering design: Part two: serviceability evaluation for product redesign. J. Eng. Des. Autom. 3(3), 275–298 (1997)

    Google Scholar 

  85. L. Sivard, E. Agerman, Customer based design with constraint reasoning. Ann. CIRP 42(1), 139 (1993)

    Google Scholar 

  86. G. Sohlenius, Concurrent engineering. Ann. CIRP 41(2), 645 (1992)

    Google Scholar 

  87. R. Spicer, Y. Koren, M. Shpitalni, D. Yip-Hoi, Design principles for machining system configurations. Ann. CIRP 51(1), 275–280 (2002)

    Google Scholar 

  88. N.P. Suh, The Principles of Design (Oxford University Press, Oxford, UK, 1990)

    Google Scholar 

  89. N.P. Suh, Axiomatic Design: Advances and Applications (Oxford University Press, Oxford, UK, 2001)

    Google Scholar 

  90. Z. Sun, K. Wang, Y. Chen, D. Xue, P. Gu, Information entropy method for adaptable design evaluation. Chin. J. Eng. Des. 28(1), 1–13 (2021)

    Google Scholar 

  91. G. Taguchi, On-line Quality Control During Production (Japanese Standards Association, Tokyo, Japan, 1981)

    Google Scholar 

  92. G. Taguchi, A.E. ElSayed, T. Hsiang, Quality Engineering in Production Systems (McGraw-Hill, New York, NY, USA, 1988)

    Google Scholar 

  93. M.M. Tseng, X. Du, Design by customers for mass customization products. Ann. CIRP 47(1), 103 (1998)

    Article  Google Scholar 

  94. S. Tichkiewitch, M. Véron, Integration of manufacturing processes in design. Ann. CIRP 47(1), 99 (1998)

    Article  Google Scholar 

  95. T. Tomiyama, Y. Umeda, A CAD for functional design. Ann. CIRP 42(1), 143 (1993)

    Article  Google Scholar 

  96. T. Tomiyama, P. Gu, Y. Jin, D. Lutters, C. Kind, F. Kimura, Design methodologies: educational and industrial applications. Ann. CIRP 58, 543–565 (2009)

    Article  Google Scholar 

  97. M. Tseng, J. Jiao, Design for mass customization by developing product family architecture, in Proceedings of ASME Design Engineering Technical Conference, Atlanta, GA (1998)

    Google Scholar 

  98. D.G. Ullman, The Mechanical Design Process (McGraw-Hill, New York, NY, USA, 1997)

    Google Scholar 

  99. K. Ulrich, D. Robertson, Planning for product platforms. Sloan Manage. Rev. Summer(19–31) (1998)

    Google Scholar 

  100. K. Ulrich, The role of product architecture in the manufacturing firm. Res. Policy 24(1), 419–440 (1993)

    Google Scholar 

  101. K.T. Ulrich, K. Tung, Fundamentals of product modularity, in ASME Winter Annual Meeting, vol. DE, issue 39 (1991), pp. 73–80

    Google Scholar 

  102. Y. Umeda, H. Takeda, T. Tomiyama, H. Yoshiokawa, Function, behavior, and structure, in AIENG’90 Applications of AI in Engineering (Springer, 1990), pp. 177–193

    Google Scholar 

  103. E. Westkamper, L. Alting, G. Amdi, Life cycle management and assessment approaches and visions towards sustainable development. Ann. CIRP 49(2), 501–522 (2000)

    Article  Google Scholar 

  104. E. Westkamper, K. Feldmann, G. Reinhar, G. Seliger, Integrated development of assembly and disassembly. Ann. CIRP 48(2), 557–566 (1999)

    Article  Google Scholar 

  105. H. Weule, Life-cycle-analysis: a strategic element for future products and manufacturing technologies. Ann. CIRP 42(1), 181 (1993)

    Article  Google Scholar 

  106. H.P. Wiendahl, S. Lutz, Production in networks. Ann. CIRP 51(2), 573–586 (2002)

    Article  Google Scholar 

  107. B. Willems, G. Seliger, J. Duflou, B. Basdere, Contribution to design for adaptation: method to assess the adaptability of products (MAAP), in Proceedings of EcoDesign: Third International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, December, vol. 8, issue 11 (2003), pp. 589–596

    Google Scholar 

  108. D. Xue, G. Hua, V. Mehrad, P. Gu, Optimal adaptable design for creating the changeable product based on changeable requirements considering the whole product life-cycle. J. Manuf. Syst. 31(1), 59–68 (2012)

    Article  Google Scholar 

  109. H. Yoshikawa, General design theory and a CAD system. Man Machine Communication in CAD/CAM, in Proceedings of the IFIP WG5.2–5.3 Working Conference, Tokyo, Japan (1980)

    Google Scholar 

  110. I. Zeid, CAD/CAM: Theory and Practice, 2nd edn. (McGraw-Hill, 2009)

    Google Scholar 

  111. Y. Zeng, P. Gu, A science-based approach to product design theory Part I: formulation and formalization of design process. J. Robot. Comput. Integr. Manuf. 15(4), 331–339 (1999)

    Article  MathSciNet  Google Scholar 

  112. Y. Zeng, P. Gu, A science-based approach to product design theory Part II: Formulation of design requirements and products. J. Robot. Comput. Integr. Manuf. 15(4), 341–352 (1999)

    Article  MathSciNet  Google Scholar 

  113. H.C. Zhang, T.C. Kuo, H. Lu, S.H. Huang, Environmentally conscious design and manufacturing: a state-of-the-art survey. J. Manuf. Syst. 16(5), 352–371 (1997)

    Article  Google Scholar 

  114. J. Zhang, D. Xue, P. Gu, Adaptable design of open architecture products with robust performance. J. Eng. Des. 26(1–3), 1–23 (2015)

    Article  Google Scholar 

  115. H.C. Zhang, T.C. Kuo, Disassembly model for recycling—personal computer, in Technical Paper of the NAMRI/SME, Michigan (1996), pp. 139–144

    Google Scholar 

  116. F. Zwicky, Discovery, Invention, Research, Through the Morphological Approach (The Macmillan Company, Toronto, Canada, 1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihua Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Huazhong University of Science and Technology Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gu, P., Xue, D., Peng, Q., Zhang, J. (2024). Introduction. In: Adaptable Design. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-99-5869-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5869-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5868-9

  • Online ISBN: 978-981-99-5869-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics