Abstract
Pareto dominance-based approach is a classical method for solving multi-objective optimization problems (MOPs). However, as the number of objectives increases, the selection pressure drops sharply. Solutions with good convergence and diversity are hardly obtained. To tackle these issues, this paper proposes an enhanced subregion dominance (called ESD-dominance) relation for evolutionary many-objective optimization. In ESD-dominance, individuals in the population are associated with a set of uniform reference vectors according to the Euclidean distance. Individuals associated with the same reference vector constitute a subregion. To enhance the convergence, each subregion is re-layered based on a new convergence metric. To maintain the diversity, the density in different subregions is considered. In order to validate the performance of ESD-dominance, a modified NSGA-II (called ESD-NSGA-II) algorithm is constructed based on the proposed dominance relation. In the experiments, a set of WFG benchmark problems with 3, 5, 8, and 15 objectives are tested. Computational results show the competitiveness of ESD-NSGA-II when compared with eight other state-of-the-art algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang, L., Ng, A., Deb, K. (eds.) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3–34. Springer, London (2011). https://doi.org/10.1007/978-0-85729-652-8_1
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)
Tian, Y., Wang, H., Zhang, X., Jin, Y.: Effectiveness and efficiency of non-dominated sorting for evolutionary multi-and many-objective optimization. Complex Intell. Syst. 3(4), 247–263 (2017)
Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and its impact on the performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_5
Zhu, C., Xu, L., Goodman, E.D.: Generalization of pareto-optimality for many-objective evolutionary optimization. IEEE Trans. Evol. Comput. 20(2), 299–315 (2015)
Ikeda, K., Kita, H., Kobayashi, S.: Failure of pareto-based MOEAs: does non-dominated really mean near to optimal? In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 2, pp. 957–962. IEEE (2001)
Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)
Hernández-Díaz, A.G., Santana-Quintero, L.V., Coello, C.A.C., Molina, J.: Pareto-adaptive \(\epsilon \)-dominance. Evol. Comput. 15(4), 493–517 (2007)
Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A.: Pareto cone \(\varepsilon \)-dominance: improving convergence and diversity in multiobjective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 76–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19893-9_6
Farina, M., Amato, P.: A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 34(3), 315–326 (2004)
Zou, X., Chen, Y., Liu, M., Kang, L.: A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 38(5), 1402–1412 (2008)
Elarbi, M., Bechikh, S., Gupta, A., Said, L.B., Ong, Y.S.: A new decomposition-based NSGA-II for many-objective optimization. IEEE Trans. Syst. Man Cybern. Syst. 48(7), 1191–1210 (2017)
Gu, Q., Chen, H., Chen, L., Li, X., Xiong, N.N.: A many-objective evolutionary algorithm with reference points-based strengthened dominance relation. Inf. Sci. 554, 236–255 (2021)
Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)
Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(1), 16–37 (2015)
Wang, H., Jiao, L., Yao, X.: Two_arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2014)
Tian, Y., Cheng, R., Zhang, X., Su, Y., Jin, Y.: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 23(2), 331–345 (2018)
Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2014)
Deb, K., Agrawal, R.B., et al.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)
Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)
Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems. In: 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), pp. 170–177. IEEE (2014)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 62166027), and Jiangxi Provincial Natural Science Foundation (No. 20212ACB212004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, S., Wang, H., Wei, Z., Liao, F., Wang, F. (2023). An Enhanced Subregion Dominance Relation for Evolutionary Many-Objective Optimization. In: Zhang, H., et al. International Conference on Neural Computing for Advanced Applications. NCAA 2023. Communications in Computer and Information Science, vol 1869. Springer, Singapore. https://doi.org/10.1007/978-981-99-5844-3_16
Download citation
DOI: https://doi.org/10.1007/978-981-99-5844-3_16
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-5843-6
Online ISBN: 978-981-99-5844-3
eBook Packages: Computer ScienceComputer Science (R0)