Skip to main content

Overview of the Current Nano-Materials, Synthesis, Properties and Characterization

  • Chapter
  • First Online:
Functionalized Smart Nanomaterials for Point-of-Care Testing

Abstract

Point of care testing (PoCT) systems, which enable diagnosis and treatment at or close to the care site, play a crucial role in the control of epidemics and other types of infectious diseases that are spread throughout the world due to their advantages such as short turnaround times, portability, reusability, efficiency, ease of use, and low cost. In particular, nanomaterial-based PoCT systems are widely used due to their excellent chemical and physical properties that allow high analytical performance and simplify the detection process. Therefore, recently, many different types of nanomaterials have been used to develop nanomaterial-based PoCT devices in various platforms. Various kinds of nanomaterials such as metal-based nanoparticles, quantum dots, nanoshells, nanotubes, metal–organic frameworks (MOFs) nanogels, nanofibers, and flexible hybrid composites are used to provide detection, signal generation, transduction, and amplification in PoCT devices. In this context, the synthesis methods and controlled physical/chemical properties of these nanomaterials are crucial points to improve the performance of the PoCT devices. In this chapter, we will highlight the synthesis and development strategies of nanomaterials currently used in different PoCT devices, along with existing challenges and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdolahinia ED, Barati G, Ranjbar-Navazi Z, Kadkhoda J, Islami M, Hashemzadeh N et al (2022) Application of nanogels as drug delivery systems in multicellular spheroid tumor model. J Drug Deliv Sci Technol 68:103109

    Google Scholar 

  2. Adams S, Thai D, Mascona X, Schwartzberg AM, Zhang JZ (2014) Key factors affecting the reproducibility of synthesis and growth mechanism of near-infrared absorbing hollow gold nanospheres. Chem Mater 26(23):6805–6810

    Article  CAS  Google Scholar 

  3. Adil LR, Parui R, Khatun MN, Chanu MA, Li L, Wang S, Iyer PK (2022) Nanomaterials for sensors: synthesis and applications. In: Advanced nanomaterials for point of care diagnosis and therapy, Elsevier, pp 121–168

    Google Scholar 

  4. Aftab S, Shah A, Erkmen C, Kurbanoglu S, Uslu B (2021) Quantum dots: synthesis and characterizations. In: Electroanalytical applications of quantum dot-based biosensors. Elsevier, pp 1–35

    Google Scholar 

  5. AkbaráAshkarran A, MostafaáAkbari S, RezaáHormozi-Nezhad M (2015) Determination of nanoparticles using UV-Vis spectra. Nanoscale 7(12):5134–5139

    Article  Google Scholar 

  6. Al-Kassawneh M, Sadiq Z, Jahanshahi-Anbuhi S (2022) Pullulan-stabilized gold nanoparticles tablet as a nanozyme sensor for point-of-care applications. Sens. Bio-Sens. Res. 38:100526

    Article  Google Scholar 

  7. Al-Kutubi H, Dikhtiarenko A, Zafarani HR, Sudhölter EJ, Gascon J, Rassaei L (2015) Facile formation of ZIF-8 thin films on ZnO nanorods. CrystEngComm 17(29):5360–5364

    Article  CAS  Google Scholar 

  8. Alabsi SS, Ahmed AY, Dennis JO, Khir MM, Algamili A (2020) A review of carbon nanotubes field effect-based biosensors. IEEE Access 8:69509–69521

    Article  Google Scholar 

  9. Amirthalingam T, Kalirajan J, Chockalingam A (2011) Use of silica-gold core shell structured nanoparticles for targeted drug delivery system. J Nanomed Nanotechnol 2(6)

    Google Scholar 

  10. Annamalai J, Murugan P, Ganapathy D, Nallaswamy D, Atchudan R, Arya S et al (2022) Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications—A review. Chemosphere, 134184

    Google Scholar 

  11. Averitt R, Sarkar D, Halas N (1997) Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78(22):4217

    Article  CAS  Google Scholar 

  12. Azhar MR, Abid HR, Tade MO, Periasamy V, Sun H, Wang S (2018) Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: proof of concept. Chem Eng J 341:262–271

    Article  CAS  Google Scholar 

  13. Bao H, Bihr T, Smith A-S, Taylor RNK (2014) Facile colloidal coating of polystyrene nanospheres with tunable gold dendritic patches. Nanoscale 6(8):3954–3966

    Article  CAS  Google Scholar 

  14. Bhaladhare S, Bhattacharjee S (2022) Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): a review. Int J Biol Macromol

    Google Scholar 

  15. Bhaskar S, Rai A, Ganesh KM, Reddy R, Reddy N, Ramamurthy SS (2022) Sericin-based bio-inspired nano-engineering of heterometallic AgAu nanocubes for attomolar mefenamic acid sensing in the mobile phone-based surface plasmon-coupled interface. Langmuir 38(39):12035–12049

    Article  CAS  Google Scholar 

  16. Biemmi E, Christian S, Stock N, Bein T (2009) High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater 117(1–2):111–117

    Article  CAS  Google Scholar 

  17. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764

    Article  CAS  Google Scholar 

  18. Cao X, Chen W, Zhao P, Yang Y, Yu D-G (2022) Electrospun porous nanofibers: pore-forming mechanisms and applications for photocatalytic degradation of organic pollutants in wastewater. Polymers 14(19):3990

    Article  CAS  Google Scholar 

  19. Che H, Yuan J (2022) Recent advances in electrospinning supramolecular systems. J Mater Chem B 10(1):8–19

    Article  CAS  Google Scholar 

  20. Chen X, Li R, Wong SHD, Wei K, Cui M, Chen H et al (2019) Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nat Commun 10(1):2705

    Google Scholar 

  21. Chen X, Liu X, Zhang C, Meng H, Liu B, Wei X (2022) A rapid fluorescent aptasensor for point-of-care detection of C-reactive protein. Talanta 249:123661

    Article  CAS  Google Scholar 

  22. Chen X, Xu J, Li Y, Zhang L, Bi N, Gou J et al (2023) A novel intelligently integrated MOF-based ratio fluorescence sensor for ultra-sensitive monitoring of TC in water and food samples. Food Chem 405:134899

    Google Scholar 

  23. Cheng Y, Li Z, Gao J, Yu H-D, Zhang G (2022) Introduction to flexible nanomaterials: microscopic mechanisms and macroscopic applications. Nanoscale Adv 4(7):1716–1717

    Article  Google Scholar 

  24. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334

    Google Scholar 

  25. Culver HR, Wechsler ME, Peppas NA (2018) Label-free detection of tear biomarkers using hydrogel-coated gold nanoshells in a localized surface plasmon resonance-based biosensor. ACS Nano 12(9):9342–9354

    Article  CAS  Google Scholar 

  26. Dhawane M, Deshpande A, Jain R, Dandekar P (2019) Colorimetric point-of-care detection of cholesterol using chitosan nanofibers. Sens Actuators B Chem 281:72–79

    Article  CAS  Google Scholar 

  27. Din F, Choi JY, Kim DW, Mustapha O, Kim DS, Thapa RK et al (2017) Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Delivery 24(1):502–510

    Google Scholar 

  28. Ding L, Jiang Y, Zhang J, Klok H-A, Zhong Z (2018) pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: synthesis and targeted intracellular protein delivery to CD44 positive cancer cells. Biomacromolecules 19(2):555–562

    Article  CAS  Google Scholar 

  29. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots—Characterization, preparation and usage in biological systems. Int J Mol Sci 10(2):656–673

    Article  CAS  Google Scholar 

  30. Duan L, D’hooge DR, Cardon L (2020) Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog Mater Sci 114:100617

    Google Scholar 

  31. Erdem Ö, Derin E, Zeibi Shirejini S, Sagdic K, Yilmaz EG, Yildiz S et al (2022) Carbon‐based nanomaterials and sensing tools for wearable health monitoring devices. Adv Mater Technol 7(3):2100572

    Google Scholar 

  32. Fan Z, Huang X, Tan C, Zhang H (2015) Thin metal nanostructures: synthesis, properties and applications. Chem Sci 6(1):95–111

    Article  CAS  Google Scholar 

  33. Fathi M, Abdolahinia ED, Barar J, Omidi Y (2020) Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine 15(22):2171–2200

    Article  CAS  Google Scholar 

  34. Friščić T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chem Soc Rev 41(9):3493–3510

    Article  Google Scholar 

  35. Fu X, Gou M, Zhang Y, Su H, Zhao H, Liu C, Han J (2022) Simultaneous and visual detection of multiple dopes by an aptamer/AuNPs sensor. New J Chem 46(38):18128–18132

    Article  CAS  Google Scholar 

  36. Gu Z, Biswas A, Joo K-I, Hu B, Wang P, Tang Y (2010) Probing protease activity by single-fluorescent-protein nanocapsules. Chem Commun 46(35):6467–6469

    Article  CAS  Google Scholar 

  37. Guerrero VV, Yoo Y, McCarthy MC, Jeong H-K (2010) HKUST-1 membranes on porous supports using secondary growth. J Mater Chem 20(19):3938–3943

    Article  CAS  Google Scholar 

  38. Guillen GR, Pan Y, Li M, Hoek EM (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50(7):3798–3817

    Article  CAS  Google Scholar 

  39. Ha M, Lim S, Ko H (2018) Wearable and flexible sensors for user-interactive health-monitoring devices. J Mater Chem B 6(24):4043–4064

    Article  CAS  Google Scholar 

  40. Hajebi S, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M (2019) Hybrid and hollow poly (N, N-dimethylaminoethyl methacrylate) nanogels as stimuli-responsive carriers for controlled release of doxorubicin. Polymer 180:121716

    Article  CAS  Google Scholar 

  41. Harvey JD, Jena PV, Baker HA, Zerze GH, Williams RM, Galassi TV et al (2017) A carbon nanotube reporter of microRNA hybridization events in vivo. Nat Biomed Eng 1(4):0041

    Google Scholar 

  42. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Article  Google Scholar 

  43. Howarth AJ, Peters AW, Vermeulen NA, Wang TC, Hupp JT, Farha OK (2017) Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem Mater 29(1):26–39

    Article  CAS  Google Scholar 

  44. Hu X, Dong S (2008) Metal nanomaterials and carbon nanotubes—Synthesis, functionalization and potential applications towards electrochemistry. J Mater Chem 18(12):1279–1295

    Article  CAS  Google Scholar 

  45. Huang D, Lin B, Song Y, Guan Z, Cheng J, Zhu Z, Yang C (2018) Staining traditional colloidal gold test strips with Pt nanoshell enables quantitative point-of-care testing with simple and portable pressure meter readout. ACS Appl Mater Interfaces 11(2):1800–1806

    Article  Google Scholar 

  46. Jhawat V, Gulia M, Maddiboyina B, Dutt R, Gupta S (2020) Fate and applications of superporous hydrogel systems: a review. Curr Nanomed (Former: Recent Patents Nanomed) 10(4):326–341

    Google Scholar 

  47. Jin Y (2014) Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release. Acc Chem Res 47(1):138–148

    Article  CAS  Google Scholar 

  48. Jouyandeh M, Khadem SSM, Habibzadeh S, Esmaeili A, Abida O, Vatanpour V et al (2021) Quantum dots for photocatalysis: synthesis and environmental applications. Green Chem 23(14):4931–4954

    Google Scholar 

  49. Justino C, Silva L, Duarte K, Freitas A, Rocha-Santos T, Duarte A (2012) Determination of volatile organic compounds in human breath by optical fiber sensing. Int J Environ Ecol Eng 6(8):541–544

    Google Scholar 

  50. Kah JC, Phonthammachai N, Wan RC, Song J, White T, Mhaisalkar S et al (2008) Synthesis of gold nanoshells based on the depositionprecipitation process. Gold Bull 41:23–36

    Google Scholar 

  51. Khalid MAU, Chang SH (2022) Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: a review. Compos Struct 284:115214

    Article  CAS  Google Scholar 

  52. Kim MW, Park H-J, Park CY, Kim JH, Cho CH, Park JP et al (2020) Fabrication of a paper strip for facile and rapid detection of bovine viral diarrhea virus via signal enhancement by copper polyhedral nanoshells. RSC Adv 10(50):29759–29764

    Google Scholar 

  53. Kishimura A, Koide A, Osada K, Yamasaki Y, Kataoka K (2007) Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers: a physiologically available oxygen carrier. Angew Chem Int Ed 46(32):6085–6088

    Article  CAS  Google Scholar 

  54. Kousalová J, Etrych T (2018) Polymeric nanogels as drug delivery systems. Physiol Res 67

    Google Scholar 

  55. Lee G, Zarei M, Wei Q, Zhu Y, Lee SG (2022) Surface wrinkling for flexible and stretchable sensors. Small 18(42):2203491

    Article  CAS  Google Scholar 

  56. Lei W, Xie C, Wu T, Wu X, Wang M (2019) Transport mechanism of deformable micro-gel particle through micropores with mechanical properties characterized by AFM. Sci Rep 9(1):1453

    Article  Google Scholar 

  57. Li J, Zhu J-J (2013) Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 138(9):2506–2515

    Article  CAS  Google Scholar 

  58. Li Q, Liu L, Liu J-W, Jiang J-H, Yu R-Q, Chu X (2014) Nanomaterial-based fluorescent probes for live-cell imaging. TrAC Trends Anal Chem 58:130–144

    Article  CAS  Google Scholar 

  59. Li X, Li X, Shi X, Peng M, Lu X (2019) PNIPAM-based colloidal photonic crystals above phase transition temperature and its application in naked-eye glucose-detection. Eur Polymer J 120:109230

    Article  CAS  Google Scholar 

  60. Li ZY, Han L, Meng S, Hu R, Yang YH, Yang T (2022) Target-induced tripedal G-quadruplex DNAzyme for multicolor visual point-of-care testing of biomarkers using Au nanorods-decorated electrospun nanofibrous films. Sens Actuators B Chem 371:132510

    Article  CAS  Google Scholar 

  61. Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17

    Article  Google Scholar 

  62. Lin AY, Young JK, Nixon AV, Drezek RA (2014) Encapsulated Fe3O4/Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy. Small 10(16):3246–3251

    Article  CAS  Google Scholar 

  63. Liu S, Su W, Ding X (2016) A review on microfluidic paper-based analytical devices for glucose detection. Sensors 16(12):2086

    Article  Google Scholar 

  64. Liu X, Gao C, Gu J, Jiang Y, Yang X, Li S et al (2016) Hyaluronic acid stabilized iodine-containing nanoparticles with Au nanoshell coating for X-ray CT imaging and photothermal therapy of tumors. ACS Appl Mater Interfaces 8(41):27622–27631

    Google Scholar 

  65. Luo Y, Nartker S, Wiederoder M, Miller H, Hochhalter D, Drzal LT, Alocilja EC (2011) Novel biosensor based on electrospun nanofiber and magnetic nanoparticles for the detection of E. coli O157: H7. IEEE Trans Nanotechnol 11(4):676–681

    Google Scholar 

  66. Ma W, Zhang S, Xie C, Wan X, Li X, Chen K, Zhao G (2022) Preparation of high mechanical strength chitosan nanofiber/nanoSiO2/PVA composite scaffolds for bone tissue engineering using sol-gel method. Polymers 14(10):2083

    Article  CAS  Google Scholar 

  67. Maddiboyina B, Desu PK, Vasam M, Challa VT, Surendra AV, Rao RS et al (2022) An insight of nanogels as novel drug delivery system with potential hybrid nanogel applications. J Biomater Sci Polym Edn 33(2):262–278

    Google Scholar 

  68. Mauri E, Giannitelli SM, Trombetta M, Rainer A (2021) Synthesis of nanogels: current trends and future outlook. Gels 7(2):36

    Article  CAS  Google Scholar 

  69. Mayle KM, Dern KR, Wong VK, Sung S, Ding K, Rodriguez AR et al (2017) Polypeptide-based gold nanoshells for photothermal therapy. SLAS TECHNOLOGY: Transl Life Sci Innov 22(1):18–25

    Google Scholar 

  70. Medina-Rivera M, Cárdenas WB, Erickson D, Mehta S (2022) Gold nanoshells-based lateral flow assay for the detection of chagas disease at the point-of-care. Am J Trop Med Hygiene, tpmd211119–tpmd211119

    Google Scholar 

  71. Misra SK, Dighe K, Schwartz-Duval AS, Shang Z, Labriola LT, Pan D (2018) In situ plasmonic generation in functional ionic-gold-nanogel scaffold for rapid quantitative bio-sensing. Biosens Bioelectron 120:77–84

    Article  CAS  Google Scholar 

  72. Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44(17):6161–6186

    Article  CAS  Google Scholar 

  73. Mondal S, Zehra N, Choudhury A, Iyer PK (2020) Wearable sensing devices for point of care diagnostics. ACS Appl Bio Mater 4(1):47–70

    Article  Google Scholar 

  74. Munir MM, Widiyandari H, Iskandar F, Okuyama K (2008) Patterned indium tin oxide nanofiber films and their electrical and optical performance. Nanotechnology 19(37):375601

    Article  Google Scholar 

  75. Noreen S, Pervaiz F, Shoukat H, Ijaz S (2021) An updated review of novel nanogels as versatile

    Google Scholar 

  76. Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J et al (2020) Progress and perspectives beyond traditional RAFT polymerization. Adv Sci 7(20):2001656

    Google Scholar 

  77. Nur Topkaya S, Ozkan-Ariksoysal D (2016) Prostate cancer biomarker detection with carbon nanotubes modified screen printed electrodes. Electroanalysis 28(5):1077–1084

    Article  CAS  Google Scholar 

  78. Oishi M, Nagasaki Y (2010) Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine 5(3):451–468

    Article  CAS  Google Scholar 

  79. Park HH, Srisombat L-O, Jamison AC, Liu T, Marquez MD, Park H et al (2018) Temperature-responsive hydrogel-coated gold nanoshells. Gels 4(2):28

    Google Scholar 

  80. Pashchenko O, Shelby T, Banerjee T, Santra S (2018) A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis. ACS Infect Dis 4(8):1162–1178

    Article  CAS  Google Scholar 

  81. Paul KB, Singh V, Vanjari SRK, Singh SG (2017) One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125. Biosens Bioelectron 88:144–152

    Article  CAS  Google Scholar 

  82. Phonthammachai N, Kah JC, Jun G, Sheppard CJ, Olivo MC, Mhaisalkar SG, White TJ (2008) Synthesis of contiguous silica−gold core−shell structures: critical parameters and processes. Langmuir 24(9):5109–5112

    Article  CAS  Google Scholar 

  83. Pinelli F, Saadati M, Zare EN, Makvandi P, Masi M, Sacchetti A, Rossi F (2022) A perspective on the applications of functionalized nanogels: promises and challenges. Int Mater Rev, 1–25

    Google Scholar 

  84. Quesada-González D, Merkoçi A (2018) Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 47(13):4697–4709

    Article  Google Scholar 

  85. Rafique R, Baek SH, Nguyen TP, Park KY, Kim EB, Kim JG et al (2018) Gold-copper nanoshell dot-blot immunoassay for naked-eye sensitive detection of tuberculosis specific CFP-10 antigen. Biosens Bioelectron 121:111–117

    Google Scholar 

  86. Raptopoulou CP (2021) Metal-organic frameworks: synthetic methods and potential applications. Materials 14(2):310

    Article  CAS  Google Scholar 

  87. Rathinavel S, Priyadharshini K, Panda D (2021) A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B 268:115095

    Article  CAS  Google Scholar 

  88. Ren Z, Qi D, Sonar P, Wei Z (2020) Flexible sensors based on hybrid materials. J Semiconduct 41(4):040402-040402-040402

    Google Scholar 

  89. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A et al (2015) Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14(1):48–55

    Google Scholar 

  90. Saleh TA (2020) Nanomaterials: classification, properties, and environmental toxicities. Environ Technol Innov 20:101067

    Article  CAS  Google Scholar 

  91. Sari E (2022) Synthesis and characterization of high quantum yield graphene quantum dots via pyrolysis of glutamic acid and aspartic acid. J Nanopart Res 24(2):37

    Article  CAS  Google Scholar 

  92. Schneider R, Facure MH, Chagas PA, Andre RS, dos Santos DM, Correa DS (2021) Tailoring the surface properties of micro/nanofibers using 0d, 1d, 2d, and 3d nanostructures: a review on post-modification methods. Adv Mater Interfaces 8(13):2100430

    Article  CAS  Google Scholar 

  93. Sharmila S, Shankaran DR (2022) Plasmonic nanogels for naked-eye sensing of food adulterants. Anal Methods 14(45):4703–4712

    Article  CAS  Google Scholar 

  94. Sindhu RK, Gupta R, Wadhera G, Kumar P (2022) Modern herbal nanogels: formulation, delivery methods, and applications. Gels 8(2):97

    Article  CAS  Google Scholar 

  95. Soni KS, Desale SS, Bronich TK (2016) Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–126

    Article  CAS  Google Scholar 

  96. Srinivasan B, Nanus DM, Erickson D, Mehta S (2021) Highly portable quantitative screening test for prostate-specific antigen at point of care. Curr Res Biotechnol 3:288–299

    Article  CAS  Google Scholar 

  97. Stassen I, Styles M, Grenci G, Gorp HV, Vanderlinden W, Feyter SD et al (2016) Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater 15(3):304–310

    Google Scholar 

  98. Sun Z, Qing M, Fan YZ, Yan H, Li NB, Luo HQ (2022) Quadruple analyte responsive platform: point-of-care testing and multi-coding logic computation based on metal ions recognition and selective response. J Hazard Mater 437:129331

    Article  CAS  Google Scholar 

  99. Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K (2017) Point of care testing: the impact of nanotechnology. Biosens Bioelectron 87:373–387

    Article  CAS  Google Scholar 

  100. Takaloo S, Zand MM (2021) Wearable electrochemical flexible biosensors: With the focus on affinity biosensors. Sens Bio-Sens Res 32:100403

    Article  Google Scholar 

  101. Tran H, Piro B, Reisberg S, Tran L, Duc H, Pham M (2013) Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169

    Article  CAS  Google Scholar 

  102. Tung NT, Tue PT, Thi Ngoc Lien T, Ohno Y, Maehashi K, Matsumoto K et al (2017) Peptide aptamer-modified single-walled carbon nanotube-based transistors for high-performance biosensors. Sci Rep 7(1):17881

    Google Scholar 

  103. Ullah A, Lim SI (2022) Nanogels: update on the methods of synthesis and applications for cardiovascular and neurological complications. J Drug Deliv Sci Technol 103879

    Google Scholar 

  104. Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M et al (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7:1–14

    Google Scholar 

  105. Van Enter BJ, Von Hauff E (2018) Challenges and perspectives in continuous glucose monitoring. Chem Commun 54(40):5032–5045

    Article  Google Scholar 

  106. Wang C, Xu H, Liang C, Liu Y, Li Z, Yang G et al (2013) Iron oxide@ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 7(8):6782–6795

    Google Scholar 

  107. Wang H, Li S, Lu H, Zhu M, Liang H, Wu X, Zhang Y (2023) Carbon‐based flexible devices for comprehensive health monitoring. Small Methods, 2201340

    Google Scholar 

  108. Wang H, Lin M, Chen D, Dong Z, Yang Z, Zhang J (2018) Research on the rheological properties of cross-linked polymer microspheres with different microstructures. Powder Technol 331:310–321

    Article  CAS  Google Scholar 

  109. Wang H, Sugiarto S, Li T, Ang WH, Lee C, Pastorin G (2016) Advances in nanomaterials and their applications in point of care (POC) devices for the diagnosis of infectious diseases. Biotechnol Adv 34(8):1275–1288

    Article  Google Scholar 

  110. Wang J, Zhang S, Cao H, Ma J, Huang L, Yu S et al (2022) Water purification and environmental remediation applications of carbonaceous nanofiber-based materials. J Clean Prod 331:130023

    Google Scholar 

  111. Wang L, Xu D, Gao J, Chen X, Duo Y, Zhang H (2020) Semiconducting quantum dots: modification and applications in biomedical science. Sci China Mater 63(9):1631–1650

    Article  CAS  Google Scholar 

  112. Wang S-G, Jiang X, Chen P-C, Yu A-G, Huang X-J (2012) Preparation of coaxial-electrospun poly [bis (p-methylphenoxy)] phosphazene nanofiber membrane for enzyme immobilization. Int J Mol Sci 13(11):14136–14148

    Article  CAS  Google Scholar 

  113. Wang X, Li F, Guo Y (2020) Recent trends in nanomaterial-based biosensors for point-of-care testing. Front Chem 8:586702

    Article  CAS  Google Scholar 

  114. Wang Y, Qian W, Tan Y, Ding S, Zhang H (2007) Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells. Talanta 72(3):1134–1140

    Article  CAS  Google Scholar 

  115. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44(14):4792–4834

    Article  CAS  Google Scholar 

  116. Williams RM, Lee C, Heller DA (2018) A fluorescent carbon nanotube sensor detects the metastatic prostate cancer biomarker uPA. ACS Sens 3(9):1838–1845

    Article  CAS  Google Scholar 

  117. Wu C, Yu C, Chu M (2011) A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int J Nanomed 807–813

    Google Scholar 

  118. Wu C, Zhi Z, Duan M, Sun J, Jiang H, Pang J (2023) Insights into the formation of carboxymethyl chitosan-nisin nanogels for sustainable antibacterial activity. Food Chem 402:134260

    Article  CAS  Google Scholar 

  119. Wu S, Peng S, Yu Y, Wang CH (2020) Strategies for designing stretchable strain sensors and conductors. Adv Mater Technol 5(2):1900908

    Article  CAS  Google Scholar 

  120. Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y (2020) Recent advances in flexible and stretchable sensing systems: from the perspective of system integration. ACS Nano 14(6):6449–6469

    Article  CAS  Google Scholar 

  121. Xu K, Lu Y, Takei K (2021) Flexible hybrid sensor systems with feedback functions. Adv Func Mater 31(39):2007436

    Article  CAS  Google Scholar 

  122. Yamamoto Y, Yamamoto D, Takada M, Naito H, Arie T, Akita S, Takei K (2017) Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch. Adv Healthcare Mater 6(17):1700495

    Article  Google Scholar 

  123. Yan J, Zhang J, Zhang M, Shi G (2022) Lanthanide metal-organic framework as a paper strip sensor for visual detection of sulfonamide with smartphone-based point-of-care platform. Talanta 237:122920

    Article  CAS  Google Scholar 

  124. Yan Z, Zhang S, Gao M, Zhu Z, Li J, Huang Z et al (2023) Ultrasensitive and wide-range-detectable flexible breath sensor based on silver vanadate nanowires. ACS Appl Electron Mater

    Google Scholar 

  125. Yang Y, Luo C, Jia J, Sun Y, Fu Q, Pan C (2019) A wrinkled Ag/CNTs-PDMS composite film for a high-performance flexible sensor and its applications in human-body single monitoring. Nanomaterials 9(6):850

    Article  CAS  Google Scholar 

  126. Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J et al (2020) Nanomaterial‐enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv Mater 32(15):1902343

    Google Scholar 

  127. Yao S, Zhu Y (2015) Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater 27(9):1480–1511

    Article  CAS  Google Scholar 

  128. Yoon Y, Truong PL, Lee D, Ko SH (2021) Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanosci Au 2(2):64–92

    Article  Google Scholar 

  129. Yuan F, Xia Y, Lu Q, Xu Q, Shu Y, Hu X (2022) Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta, 123419

    Google Scholar 

  130. Yuan K, Sun Y, Liang F, Pan F, Hu M, Hua F et al (2022) Tyndall-effect-based colorimetric assay with colloidal silver nanoparticles for quantitative point-of-care detection of creatinine using a laser pointer pen and a smartphone. RSC Adv 12(36):23379–23386

    Google Scholar 

  131. Yuan Z, Han S-T, Gao W, Pan C (2021) Flexible and stretchable strategies for electronic skins: materials, structure, and integration. ACS Appl Electron Mater 4(1):1–26

    Article  CAS  Google Scholar 

  132. Zazoum B, Batoo KM, Khan MAA (2022) Recent advances in flexible sensors and their applications. Sensors 22(12):4653

    Article  Google Scholar 

  133. Zhang J, Liu J, Wang S, Zhan P, Wang Z, Ming N (2004) Facile methods to coat polystyrene and silica colloids with metal. Adv Func Mater 14(11):1089–1096

    Article  CAS  Google Scholar 

  134. Zhang J, Shi G (2022) Rational design of MoS2 QDs and Eu3+ as a ratiometric fluorescent probe for point-of-care visual quantitative detection of tetracycline via smartphone-based portable platform. Anal Chim Acta 1198:339572

    Article  CAS  Google Scholar 

  135. Zhang Y, Yan B (2019) A point-of-care diagnostics logic detector based on glucose oxidase immobilized lanthanide functionalized metal–organic frameworks. Nanoscale 11(47):22946–22953

    Article  CAS  Google Scholar 

  136. Zhao C, Si Y, Pan B, Taha AY, Pan T, Sun G (2020) Design and fabrication of a highly sensitive and naked-eye distinguishable colorimetric biosensor for chloramphenicol detection by using ELISA on nanofibrous membranes. Talanta 217:121054

    Article  CAS  Google Scholar 

  137. Zhao S, Li J, Cao D, Zhang G, Li J, Li K et al (2017) Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl Mater Interfaces9(14):12147–12164

    Google Scholar 

  138. Zhu Z (2017) An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett 9(3):25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokcen Birlik Demirel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cimen, Z. et al. (2024). Overview of the Current Nano-Materials, Synthesis, Properties and Characterization. In: Mandal, A.K., Ghorai, S., Husen, A. (eds) Functionalized Smart Nanomaterials for Point-of-Care Testing. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5787-3_1

Download citation

Publish with us

Policies and ethics