Skip to main content

A Regularization Ensemble Based on Levenberg–Marquardt Algorithm for Robot Calibration

  • Chapter
  • First Online:
Robot Control and Calibration

Abstract

This chapter investigates six regularization schemes, such as L1, L2, dropout, elastic, log, and swish. Then, an efficient ensemble incorporates six regularizations to achieve high calibration accuracy. Firstly, Sect. 5.1 discuss the research background of robot calibration. In Sect. 5.2, we introduce six regularized robot calibration schemes and the principle of an ensemble. Then, Sect. 5.3 presents experiments for the proposed ensemble. Lastly, conclusions and future work are summarized in Sect. 5.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, T., Sun, K., Xie, Z.W., Liu, H.: Optimal measurement configurations for kinematic calibration of six-DOF serial robot. J. Cent. S. Univ. Technol. 18, 618–626 (2011)

    Article  Google Scholar 

  2. Xiao, X., Ma, Y., Xia, Y., Zhou, M., Luo, X., Wang, X., Fu, X., Wei, W., Jiang, N.: Novel workload-aware approach to mobile user reallocation in crowded mobile edge computing environment. IEEE Trans. Intell. Transport. Syst. 23(7), 8846–8856 (2022)

    Article  Google Scholar 

  3. Luo, X., Zhou, Y., Liu, Z.G., Hu, L., Zhou, M.C.: Generalized Nesterov’s acceleration incorporated, non-negative and adaptive latent factor analysis. IEEE Trans. Serv. Comput. 15(5), 2809–2823 (2021)

    Article  Google Scholar 

  4. Joubair, A., Bonev, I.A.: Non-kinematic calibration of a six-axis serial robot using planar constraints. Precis. Eng. 40, 325–333 (2015)

    Article  Google Scholar 

  5. Jiang, Z.H., Zhou, W.G., Li, H., Mo, Y., Ni, W.C., Huang, Q.: A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm. IEEE Trans. Ind. Electron. 65(4), 3337–3345 (2018)

    Article  Google Scholar 

  6. Li, C., Wu, Y.Q., Löwe, H., Li, Z.X.: POE-based robot kinematic calibration using axis configuration space and the adjoint error model. IEEE Trans. Robot. 32(5), 1264–1279 (2016)

    Article  Google Scholar 

  7. Santolaria, J., Brau, A., Velázquez, J., Aguilar, J.J.: A self-centering active probing technique for kinematic parameter identification and verification of articulated arm coordinate measuring machines. Meas. Sci. Technol. 21(5), 055101 (2010)

    Article  Google Scholar 

  8. Ma, L., Bazzoli, P., Sammons, P.M., Landers, R.G., Bristow, D.A.: Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Robot. Comput.-Integr. Manuf. 50, 153–167 (2018)

    Article  Google Scholar 

  9. Leng, C.C., Zhang, H., Cai, G.R., Cheng, I., Basu, A.: Graph regularized Lp smooth non-negative matrix factorization for data representation. IEEE/CAA J. Autom. Sin. 6(2), 584–595 (2019)

    Article  MathSciNet  Google Scholar 

  10. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Statist. Soc., B, Stat. Methodol. 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Luo, X., Zhou, M., Wang, Xia, Y., Zhu, Q.: An effective scheme for QoS estimation via alternating direction method-based matrix factorization. IEEE Trans. Services Comput. 12(4), 503–518 (2019)

    Article  Google Scholar 

  13. Dietterich, T.G.: Ensemble methods in machine learning. Multiple Classifier Syst. 1857, 1–15 (2000)

    Article  Google Scholar 

  14. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)

    Article  Google Scholar 

  15. Liu, J., Chen, Y.: HAP: a hybrid QoS prediction approach in cloud manufacturing combining local collaborative filtering and global case-based reasoning. IEEE Trans. Services Comput. 14(6), 1796–1808 (2021)

    Article  Google Scholar 

  16. Klimchik, A., Furet, B., Caro, S., Pashkevich, A.: Identification of the manipulator stiffness model parameters in industrial environment. Mechanism Mach. Theory. 90, 1–22 (2015)

    Article  Google Scholar 

  17. Shi, X.Y., He, Q., Luo, X., Bai, Y.N., Shang, M.S.: Large-scale and scalable latent factor analysis via distributed alternative stochastic gradient descent for recommender systems. IEEE Trans. Big Data. 8(2), 420–431 (2022)

    Google Scholar 

  18. Luo, X., Zhou, M., Xia, Y., Zhu, Q.: An efficient non-negative matrix factorization-based approach to collaborative filtering for recommender systems. IEEE Trans. Ind. Informat. 10(2), 1273–1284 (2014)

    Article  Google Scholar 

  19. Wu, D., He, Y., Luo, X., Zhou, M.C.: A latent factor analysis-based approach to online sparse streaming feature selection. IEEE Trans. Syst. Man Cybern. Syst. 52(11), 6744–6758 (2021)

    Article  Google Scholar 

  20. Luo, X., Zhou, M.C.: Effects of extended stochastic gradient descent algorithms on improving latent factor-based recommender systems. IEEE Robot. Autom. Lett. 4(2), 618–624 (2019)

    Article  Google Scholar 

  21. Luo, X., Zhou, M.C., Li, S., You, Z.H., Xia, Y.N., Zhu, Q.S.: A non-negative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 524–537 (2016)

    Article  MathSciNet  Google Scholar 

  22. Le, P.N., Kang, H.J.: A robotic calibration method using a model based identification technique and an invasive weed optimization neural network compensator. Appl. Sci. 10(20), 7320 (2020)

    Article  Google Scholar 

  23. Luo, X., Zhou, M.C., Li, S., You, Z.H., Xia, Y.N., Zhu, Q.S., Leung, H.: An efficient second-order approach to factorizing sparse matrices in recommender systems. IEEE Trans. Ind. Inform. 11(4), 946–956 (2015)

    Article  Google Scholar 

  24. Wu, H., Luo, X., Zhou, M.C., Rawa, M.J., Sedraoui, K., Albeshri, A.: A PID-incorporated latent factorization of tensors approach to dynamically weighted directed network analysis. IEEE/CAA J. Autom. Sin. 9(3), 533–546 (2021)

    Article  Google Scholar 

  25. Li, Y.-H., Zhan, Z.-H., Lin, S.-J., Zhang, J., Luo, X.-N.: Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems. Inf. Sci. 293, 370–382 (2015)

    Article  Google Scholar 

  26. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koren, Y., Bell, R., Volinsky, C.: Matrix-factorization techniques for recommender systems. Computer. 42(8), 30–37 (2009)

    Article  Google Scholar 

  29. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009)

    Google Scholar 

  30. Wang, S., Manning, C.: Fast dropout training. In: Proc. of ICML., pp. 118–126 (2013)

    Google Scholar 

  31. Mou, W., Zhou, Y., Gao, J., Wang, L.: Dropout training, data dependent regularization, and generalization bounds. In: Proc. of 35th Int. Conf. Mach. Learn, pp. 3642–3650, Stockholm (2018)

    Google Scholar 

  32. Gal,Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: Proc. of Int. Conf. Mach. Learn. pp. 1050–1059 (2016)

    Google Scholar 

  33. Baldi, P., Sadowski, P.J.: Understanding dropout. In: Proc. of 27th Int. Conf. Neural Inf. Process. Syst., pp. 2814–2822 (2013)

    Google Scholar 

  34. Cavazza, J., Lane, C., Haeffele, B.D., Murino, V., Vidal, R.: An analysis of dropout for matrix factorization. In: Proc. of 31th Int. Conf. Neural Inf. Process. Syst, pp. 1–17, Long Beach, CA (2017)

    Google Scholar 

  35. Baldi, P., Sadowski, P.: The dropout learning algorithm. Artif. Intell. 210, 78–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wager, S., Wang, S., Liang, P.S.: dropout training as adaptive regularization. In: Proc. of Adv. Neural Inf. Process. Syst., Stateline, NV, pp. 351–359 (2013)

    Google Scholar 

  37. Armagan, A., Dunson, D.B., Lee, J.: Generalized double pareto shrinkage. Stat. Sin. 23(1), 119–143 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Zhou, H., Li, L.X.: Regularized matrix regression. J. Roy. Statist. Soc., Ser. B, Statist. Methodol. 76(2), 463–483 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bayram, I., Chen, P.-Y., Selesnick, I.W.: Fused lasso with a nonconvex sparsity inducing penalty. In: Proc. of IEEE Int. Conf. Acoust., Speech Signal Process, pp. 4156–4160, Florence (2014)

    Google Scholar 

  40. Singh, A., Bist, A.S.: A wide scale survey on handwritten character recognition using machine learning. Int. J. Comput. Sci. Eng. 7(6), 124–134 (2019)

    Google Scholar 

  41. Wu, H., Luo, X., Zhou, M.C.: Advancing non-negative latent factorization of tensors with diversified regularizations. IEEE Trans. Serv. Comput. 15(3), 1334–1344 (2022)

    Article  Google Scholar 

  42. Xie, Z.T., Jin, L., Luo, X., Hu, B., Li, S.: An acceleration-level data-driven repetitive motion planning scheme for kinematic control of robots with unknown structure. IEEE Trans. Syst. Man Cybern. Syst. 52(9), 5679–5691 (2022)

    Article  Google Scholar 

  43. Chen, D.C., Li, S., Wu, Q., Luo, X.: New disturbance rejection constraint for redundant robot manipulators: an optimization perspective. IEEE Trans. Ind. Inform. 16(4), 2221–2232 (2020)

    Article  Google Scholar 

  44. Jin, L., Li, S., Luo, X., Li, Y.M., Qin, B.: Neural dynamics for cooperative control of redundant robot manipulators. IEEE Trans. Ind. Inform. 14(9), 3812–3821 (2018)

    Article  Google Scholar 

  45. Khan, A.H., Li, S., Luo, X.: Obstacle avoidance and tracking control of redundant robotic manipulator: an RNN based metaheuristic approach. IEEE Trans. Ind. Inform. 16(7), 4670–4680 (2020)

    Article  Google Scholar 

  46. Koren, Y., Bell, R.: Advances in collaborative-filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, New York (2011)

    Chapter  Google Scholar 

  47. Lai, Z., Wong, W.K., Xu, Y., Zhao, C., Sun, M.: Sparse alignment for robust tensor learning. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1779–1792 (2014)

    Article  Google Scholar 

  48. Wei, L., Jin, L., Luo, X.: Noise-suppressing neural dynamics for time-dependent constrained nonlinear optimization with applications. IEEE Trans. Syst. Man Cybern. Syst. 52(10), 6139–6150 (2022)

    Article  Google Scholar 

  49. Lu, H.Y., Jin, L., Luo, X., Liao, B.L., Guo, D.S., Xiao, L.: RNN for solving perturbed time-varying underdetermined linear system with double bound limits on residual errors and state variables. IEEE Trans. Ind. Inform. 15(11), 5931–5942 (2019)

    Article  Google Scholar 

  50. Lai, Z., Xu, Y., Yang, J., Tang, J., Zhang, D.: Sparse tensor discriminant analysis. IEEE Trans. Image Process. 22(10), 3904–3915 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, Z., Lai, Z., Xu, Y., Shao, L., Wu, J., Xie, G.-S.: Discriminative elastic-net regularized linear regression. IEEE Trans. Image Process. 26(3), 1466–1481 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: Proc. of 4th ACM Int. Conf. Web Search Data Mining, pp. 287–296, Hong Kong (2011)

    Google Scholar 

  53. Li, H., Chen, N., Li, L.: Error analysis for matrix elastic-net regularization algorithms. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 737–748 (2015)

    Google Scholar 

  54. Li, S., Zhou, M.C., Luo, X.: Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 4791–4801 (2018)

    Article  MathSciNet  Google Scholar 

  55. Luo, X., Wu, H., Wang, Z., Wang, J.J., Meng, D.Y.: A novel approach to large-scale dynamically weighted directed network representation. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9756–9773 (2022)

    Article  Google Scholar 

  56. Luo, X., Zhou, M.C., Xia, Y.N., Zhu, Q.S.: An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering. IEEE Trans. Autom. Sci. Eng. 13(1), 333–343 (2016)

    Article  Google Scholar 

  57. Wu, D., Luo, X., He, Y., Zhou, M.: A prediction-sampling-based multilayer-structured latent factor model for accurate representation to high-dimensional and sparse data. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2022.3200009

  58. Luo, X., Zhou, M.C., Li, S., You, Z.H., Xia, Y.N., Zhu, Q.S.: A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 579–592 (2015)

    Article  MathSciNet  Google Scholar 

  59. Xia, Y., Zhou, M., Luo, X., Pang, S., Zhu, Q.: A stochastic approach to analysis of energy-aware dvs-enabled cloud datacenters. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 73–83 (2015)

    Article  Google Scholar 

  60. Song, Y., Zhu, Z., Li, M., Yang, G., Luo, X.: Non-negative latent factor analysis-incorporated and feature-weighted fuzzy double c-means clustering for incomplete data. IEEE Trans. Fuzzy Syst. 30(10), 4165–4176 (2022)

    Article  Google Scholar 

  61. Luo, X., Xia, Y., Zhu, Q.: Incremental collaborative filtering recommender based on regularized matrix factorization. Knowl.-Based Syst. 27, 271–280 (2012)

    Article  Google Scholar 

  62. Chen, D., Wang, T.M., Yuan, P.J., Ning, S., Tang, H.Y.: A positional error compensation method for industrial robots combining error similarity and radial basis function neural network. Meas. Sci. Technol. 30(12), 125010 (2019)

    Article  Google Scholar 

  63. Du, G., Liang, Y., Li, C., Liu, P.X., Li, D.: Online robot kinematic calibration using hybrid filter with multiple sensors. IEEE Trans. Instrum. Meas. 69(9), 7092–7107 (2020)

    Article  Google Scholar 

  64. Fan, C., Zhao, G., Zhao, J., Zhag, L., Sun, L.: Calibration of a parallel mechanism in a serial-parallel polishing machine tool based on genetic algorithm. Int. J. Adv. Manuf. Technol. 81(1), 27–37 (2015)

    Article  Google Scholar 

  65. Khan, A.H., Li, S., Luo, X.: Obstacle avoidance and tracking control of redundant robotic manipulator: an RNN-based metaheuristic approach. IEEE Trans. Ind. Inform. 16(7), 4670–4680 (2019)

    Article  Google Scholar 

  66. Huang, Y.A., You, Z.H., Chen, X., Chan, K., Luo, X.: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinform. 17, 1–11 (2016)

    Article  Google Scholar 

  67. Luo, X., Sun, J., Wang, Z., Li, S., Shang, M.: Symmetric and nonnegative latent factor models for undirected, high-dimensional, and sparse networks in industrial applications. IEEE Trans. Ind. Inform. 13(6), 3098–3107 (2017)

    Article  Google Scholar 

  68. Luo, X., Zhou, M.C., Li, S., You, Z.H., Xia, Y.N., Zhu, Q.S., Leung, H.: An efficient second-order approach to factorize sparse matrices in recommender systems. IEEE Trans. Ind. Inform. 11(4), 946–956 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X., Li, Z., Jin, L., Li, S. (2023). A Regularization Ensemble Based on Levenberg–Marquardt Algorithm for Robot Calibration. In: Robot Control and Calibration. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-99-5766-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5766-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5765-1

  • Online ISBN: 978-981-99-5766-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics