Skip to main content

Modes of Failure in Total Hip Arthroplasty

  • Chapter
  • First Online:
Hip Arthroplasty

Abstract

Total hip replacement (THR) is a successful surgery with high patient satisfaction rate. However, it fails in due course of time due to various reasons like Aseptic loosening, dislocation, infection, osteolysis, polyethylene wear, periprosthetic fracture, implant breakage, metal reaction, etc. Aseptic loosening is the most common cause of THR failure globally. This section deals in detail with the mechanism of aseptic failure, diagnosis, management, and prevention of aseptic loosening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370(9597):1508–19., ISSN 0140-6736. https://doi.org/10.1016/S0140-6736(07)60457-7.

    Article  PubMed  Google Scholar 

  2. Bozic KJ, Kamath AF, Ong K, et al. Comparative epidemiology of revision arthroplasty: failed THA poses greater clinical and economic burdens than failed TKA. Clin Orthop Relat Res. 2015;473:2131–8. https://doi.org/10.1007/s11999-014-4078-8.

    Article  PubMed  Google Scholar 

  3. Evans JT, et al. How long does a hip replacement last? A systematic review and metaanalysis of case series and national registry reports with more than 15 years of followup. Lancet. 2019;393(10172):647–54.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fevang BS, et al. Improved results of primary total hip replacement: results from the Norwegian arthroplasty register, 1987–2007. Acta Orthop. 2010;81(6):649–59.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beswick AD, et al. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open. 2(1):e000435. https://doi.org/10.1136/bmjopen-2011-000435. Print 2012, 2012.REFERENCES

  6. Kelmer G, Stone AH, Turcotte J, King PJ. Reasons for revision: primary total hip arthroplasty mechanisms of failure. J Am Acad Orthop Surg. 2021;29(2):78–87. https://doi.org/10.5435/JAAOS-D-19-00860.

    Article  PubMed  Google Scholar 

  7. Rolfson O, Bohm E, Franklin P, Lyman S, GekeDenissen JD, Dunn J, EresianChenok K, Dunbar M, Overgaard S, GöranGarellick AL, Patient-Reported Outcome Measures Working Group of the International Society of Arthroplasty Registries. Patient-reported outcome measures in arthroplasty registries. Acta Orthop. 2016;87(sup1):9–23. https://doi.org/10.1080/17453674.2016.1181816.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Runser AM. Global joint registry: analysis of revision hip arthroplasty data. Browse all Theses and Dissertations 2402. 2020. https://corescholar.libraries.wright.edu/etd_all/2402

  9. Huang T, Wang W, George D, Mao X, Graves S. What can we learn from australian orthopaedic association national joint replacement registry 2016 annual report? Ann Joint. 2017;2:11.

    Article  Google Scholar 

  10. Postler A, Lützner C, Beyer F, Tille E, Lützner J. Analysis of Total knee arthroplasty revision causes. BMC MusculoskeletDisord. 2018;19(1):55. https://doi.org/10.1186/s12891-018-1977-y. Published 2018 Feb 14

    Article  Google Scholar 

  11. Maggs J, Wilson M. The relative merits of cemented and uncemented prostheses in total hip arthroplasty. Indian J Orthop. 2017;51(4):377–85. https://doi.org/10.4103/ortho.IJOrtho_405_16.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Drummond J, Tran P, Fary C. Metal-on-metal hip arthroplasty: a review of adverse reactions and patient management. J Funct Biomater. 2015;6(3):486–99. Published 2015 Jun 26. https://doi.org/10.3390/jfb6030486.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tyson Y, Rolfson O, Kärrholm J, Hailer NP, Mohaddes M. Uncemented or cemented revision stems? Analysis of 2,296 first-time hip revision arthroplasties performed due to aseptic loosening, reported to the Swedish hip arthroplasty register. Acta Orthop. 2019;90(5):421–6. https://doi.org/10.1080/17453674.2019.1624336.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Motomura G, Hamai S, Ikemura S, et al. Contemporary indications for first-time revision surgery after primary cementless total hip arthroplasty with emphasis on early failures. J Orthop Surg Res. 2021;16:140. https://doi.org/10.1186/s13018-021-02298-5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abu-Amer Y, Darwech I, Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007;9(Suppl 1):S6. https://doi.org/10.1186/ar2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herberts P, Malchau H. Long-term registration has improved the quality of hip replacement: a review of the Swedish THR register comparing 160,000 cases. Acta Orthop Scand. 2000;71(2):111–21. https://doi.org/10.1080/000164700317413067.

    Article  CAS  PubMed  Google Scholar 

  17. Drees P, Eckardt A, Gay RE, Gay S, Huber LC. Mechanisms of disease: molecular insights into aseptic loosening of orthopedic implants. Nat Clin Pract Rheumatol. 2007;3(3):165–71. https://doi.org/10.1038/ncprheum0428.

    Article  CAS  PubMed  Google Scholar 

  18. Callaghan JJ, Pedersen DR, Johnston RC, Brown TD. Clinical biomechanics of wear in total hip arthroplasty. Iowa Orthop J. 2003;23:1–12.

    PubMed  PubMed Central  Google Scholar 

  19. Jones LC, Hungerford DS. Cement disease. Clin Orthop Relat Res. 1987;225:192–206.

    Article  Google Scholar 

  20. Sukur E, Akman YE, Ozturkmen Y, Kucukdurmaz F. Particle disease: a current review of the biological mechanisms in periprosthetic osteolysis after hip arthroplasty. Open Orthop J. 2016;10:241–51. https://doi.org/10.2174/1874325001610010241. Published 2016 Jul 15

    Article  PubMed  PubMed Central  Google Scholar 

  21. Geringer J, Forest B, Combrade P. Wear analysis of materials used as orthopaedic implants. Wear. 2006;261:971–9. https://doi.org/10.1016/j.wear.2006.03.022.

    Article  CAS  Google Scholar 

  22. Buford A, Goswami T. Review of wear mechanisms in hip implants: paper I – general. Mater Des. 2004;25:385–93. https://doi.org/10.1016/j.matdes.2003.11.010.

    Article  CAS  Google Scholar 

  23. Schwartsmann CR, Boschin LC, Gonçalves RZ, Yépez AK, de Freitas SL. New bearing surfaces in total hip replacement. Rev Bras Ortop. 2015;47(2):154–9. Published 2015 Dec 6. https://doi.org/10.1016/S2255-4971(15)30079-3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kleinhans JA, Jakubowitz E, Seeger JB, Heisel C, Kretzer JP. Macroscopic third-body wear caused by porous metal surface fragments in total hip arthroplasty. Orthopedics. 2009;32(5):364. https://doi.org/10.3928/01477447-20090501-06.

    Article  PubMed  Google Scholar 

  25. Hu CY, Yoon TR. Recent updates for biomaterials used in total hip arthroplasty. Biomater Res. 2018;22:33. https://doi.org/10.1186/s40824-018-0144-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schaaff P. The role of fretting damage in total hip arthroplasty with modular design hip joints -evaluation of retrieval studies and experimental simulation methods. J Appl Biomater Biomech. 2004;2(3):121–35.

    CAS  PubMed  Google Scholar 

  27. Willert HG, Buchhorn GH, Hess T. Die Bedeutung von Abrieb und Materialermüdungbei der Prothesenlockerung an der Hüfte [The significance of wear and material fatigue in loosening of hip prostheses]. Orthopade. 1989;18(5):350–69. German

    CAS  PubMed  Google Scholar 

  28. Morlock MM, Hube R, Wassilew G, Prange F, Huber G, Perka C. Taper corrosion: a complication of total hip arthroplasty. EFORT Open Rev. 2020;5(11):776–84. Published 2020 Nov 13. https://doi.org/10.1302/2058-5241.5.200013.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nine MJ, Choudhury D, Hee AC, Mootanah R, Osman NAA. Wear debris characterization and corresponding biological response: artificial hip and knee joints. Materials (Basel). 2014;7(2):980–1016. Published 2014 Feb 10. https://doi.org/10.3390/ma7020980.

    Article  CAS  PubMed  Google Scholar 

  30. Hosseinzadeh H, Eajazi A, Shahi A. The bearing surfaces in total hip arthroplasty-options, material characteristics and selection. Recent Adv Arthrop. 2012, 2012:163–210. https://doi.org/10.5772/26362.

  31. Li C, Zhang H. Early failure for wear after ceramic-on-highly cross-linked polyethylene total hip arthroplasty: a case report. BMC Musculoskelet Disord. 2020;21:670. https://doi.org/10.1186/s12891-020-03697-1.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mistry JB, Chughtai M, Elmallah RK, Diedrich A, Le S, Thomas M, Mont MA. Trunnionosis in total hip arthroplasty: a review. J Orthop Traumatol. 2016;17(1):1–6. https://doi.org/10.1007/s10195-016-0391-1. Epub 2016 Feb 11. PMID: 26868420; PMCID: PMC4805640

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sodhi N, Khlopas A, Sultan AA, Newman JM, Jaggard C, Mont MA, Kolisek F. Linear wear rates of a highly cross-linked polyethylene hip liner. Surg Technol Int. 2018;33:265–70.

    PubMed  Google Scholar 

  34. Jacobs JJ, Campbell PA, Konttinen YT, Implant Wear Symposium 2007 Biologic Work Group. How has the biologic reaction to wear particles changed with newer bearing surfaces? J Am Acad Orthop Surg. 2008;16(Suppl 1):S49–55. https://doi.org/10.5435/00124635-200800001-00011.

    Article  PubMed  Google Scholar 

  35. Je CY, Joo-Hyun L, Soo CY, RhyuKeeHyung KS, Yeon WY, Myung-Chul Y. Comparison of linear wear rate according to femoral head sizes in metal on conventional UHMWPE liner. Orthop Proc. 2013;95-B(SUPP_15):147.

    Google Scholar 

  36. Kannan V, Heaslip R, Richards R, Sauret V, Cobb JP. Volumetric wear measurements in total hip replacement – a novel study. Orthopaedic Proceedings. 2008;90-B(SUPP_III):559.

    Google Scholar 

  37. Cross MB, Nam D, Mayman DJ. Ideal femoral head size in total hip arthroplasty balances stability and volumetric wear. HSS J. 2012;8(3):270–4. https://doi.org/10.1007/s11420-012-9287-7. Epub 2012 Sep 13. PMID: 24082871; PMCID: PMC3470670

    Article  PubMed  PubMed Central  Google Scholar 

  38. Penmetsa JR, Laz PJ, Petrella AJ, Rullkoetter PJ. Influence of polyethylene creep behavior on wear in total hip arthroplasty. J Orthop Res. 2006;24(3):422–7. https://doi.org/10.1002/jor.20042.

    Article  PubMed  Google Scholar 

  39. Goodman SB. Wear particles, periprostheticosteolysis and the immune system. Biomaterials. 2007;28(34):5044–8. https://doi.org/10.1016/j.biomaterials.2007.06.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Topolovec M, Cör A, Milošev I. Metal-on-metal vs. metal-on-polyethylene total hip arthroplasty tribological evaluation of retrieved components and periprosthetic tissue. J Mech Behav Biomed Mater. 2014;34:243–52. https://doi.org/10.1016/j.jmbbm.2014.02.018. Epub 2014 Feb 21

    Article  CAS  PubMed  Google Scholar 

  41. Weidenhielm L, Olivecrona H, Maguire GQ, et al. Prosthetic liner wear in total hip replacement: a longitudinal 13-year study with computed tomography. Skelet Radiol. 2018;47:883–7. https://doi.org/10.1007/s00256-018-2878-8.

    Article  Google Scholar 

  42. Eltit F, Wang Q, Wang R. Mechanisms of adverse local tissue reactions to hip implants. Front Bioeng Biotechnol. 2019;7:176. https://doi.org/10.3389/fbioe.2019.00176.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Watters TS, Cardona DM, Menon KS, Vinson EN, Bolognesi MP, Dodd LG. Aseptic lymphocyte-dominated vasculitis-associated lesion: a clinicopathologic review of an underrecognized cause of prosthetic failure. Am J Clin Pathol. 2010;134(6):886–93. https://doi.org/10.1309/AJCPLTNEUAH8XI4W.

    Article  PubMed  Google Scholar 

  44. Berber R, Khoo M, Cook E, et al. Muscle atrophy and metal-on-metal hip implants: a serial MRI study of 74 hips. Acta Orthop. 2015;86(3):351–7. https://doi.org/10.3109/17453674.2015.1006981.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jazrawi LM, Bogner E, Della Valle CJ, Chen FS, Pak KI, Stuchin SA, Frankel VH, Di Cesare PE. Wear rates of ceramic-on-ceramic bearing surfaces in total hip implants: a 12-year follow-up study. J Arthroplast. 1999;14(7):781–7. https://doi.org/10.1016/s0883-5403(99)90025-6.

    Article  CAS  Google Scholar 

  46. Dawson-Amoah KG, Waddell BS, Prakash R, Alexiades MM. Adverse reaction to zirconia in a modern total hip arthroplasty with ceramic head. Arthroplast Today. 2020;6(3):612–616.e1., ISSN 2352-3441. https://doi.org/10.1016/j.artd.2020.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mak MM, Jin Z. Analysis of contact mechanics in ceramic-on-ceramic hip joint replacements. Proc Inst Mech Eng H J Eng Med. 2002;216:231–6. https://doi.org/10.1243/09544110260138718.

    Article  CAS  Google Scholar 

  48. Nich C, Goodman SB. Role of macrophages in the biological reaction to wear debris from joint replacements. J Long-Term Eff Med Implants. 2014;24(4):259–65. https://doi.org/10.1615/jlongtermeffmedimplants.2014010562.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kärrholm J, Borssén B, Löwenhielm G, Snorrason F. Does early micromotion of femoral stem prostheses matter? 4-7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br. 1994;76:912–7. https://doi.org/10.1302/0301-620X.76B6.7983118.

    Article  PubMed  Google Scholar 

  50. Park JS, Ryu KN, Hong HP, Park YK, Chun YS, Yoo MC. Focal osteolysis in total hip replacement: CT findings. Skelet Radiol. 2004;33(11):632–40. https://doi.org/10.1007/s00256-004-0812-8. Epub 2004 Jul 31

    Article  Google Scholar 

  51. Case CP, Langkamer VG, James C, Palmer MR, Kemp AJ, Heap PF, Solomon L. Widespread dissemination of metal debris from implants. J Bone Joint Surg Br. 1994;76(5):701–12.

    Article  CAS  PubMed  Google Scholar 

  52. Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am. 1992;74(6):849–63.

    Article  CAS  PubMed  Google Scholar 

  53. Revell PA. The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J R Soc Interface. 2008;5(28):1263–78. https://doi.org/10.1098/rsif.2008.0142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zicat B, Engh CA, Gokcen E. Patterns of osteolysis around total hip components inserted with and without cement. J Bone Joint Surg Am. 1995;77(3):432–9. https://doi.org/10.2106/00004623-199503000-00013.

    Article  CAS  PubMed  Google Scholar 

  55. Sheth NP, Rozell JC, Paprosky WG. Evaluation and treatment of patients with acetabular osteolysis after Total hip arthroplasty. J Am Acad Orthop Surg. 2019;27(6):e258–67. https://doi.org/10.5435/JAAOS-D-16-00685.

    Article  PubMed  Google Scholar 

  56. Dattani R. Femoral osteolysis following total hip replacement. Postgrad Med J. 2007;83(979):312–6. https://doi.org/10.1136/pgmj.2006.053215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Verdonschot N, Huiskes R. Cement debonding process of total hip arthroplasty stems. Clin Orthop Relat Res. 1997;336:297–307. https://doi.org/10.1097/00003086-199703000-00038.

    Article  Google Scholar 

  58. Keeling P, Howell JR, Kassam AM, Sathu A, Timperley AJ, Hubble MJW, Wilson MJ, Whitehouse SL. Long-term survival of the cemented exeter universal stem in patients 50 years and younger: an update on 130 hips. J Arthroplast. 2020;35(4):1042–7. https://doi.org/10.1016/j.arth.2019.11.009. Epub 2019 Nov 14

    Article  Google Scholar 

  59. Teusink MJ, Callaghan KA, Klocke NF, Goetz DD, Callaghan JJ. Femoral remodeling around Charnley total hip arthroplasty is unpredictable. Clin Orthop Relat Res. 2013;471(12):3838–46. https://doi.org/10.1007/s11999-013-2873-2. PMID: 23440619; PMCID: PMC3825900

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pulido L, Rachala SR, Cabanela ME. Cementless acetabular revision: past, present, and future. Revision total hip arthroplasty: the acetabular side using cementless implants. Int Orthop. 2011;35(2):289–98. https://doi.org/10.1007/s00264-010-1198-y.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Friedrich MJ, Schmolders J, Michel RD, Randau TM, Wimmer MD, Kohlhof H, Wirtz DC, Gravius S. Management of severe periacetabular bone loss combined with pelvic discontinuity in revision hip arthroplasty. Int Orthop. 2014;38(12):2455–61. https://doi.org/10.1007/s00264-014-2443-6. Epub 2014 Jul 16

    Article  PubMed  Google Scholar 

  62. Mjöberg B. Is the proximal bone resorption around the femoral stem after hip arthroplasty really caused by reduced stress? [published correction appears in ActaOrthop. 2018;89(1):139]. Acta Orthop. 2018;89(1):128–9. https://doi.org/10.1080/17453674.2017.1373492.

    Article  PubMed  Google Scholar 

  63. Ries MD, Link TM. Monitoring and risk of progression of osteolysis after total hip arthroplasty. J Bone Joint Surg Am. 2012;94(22):2097–105.

    PubMed  PubMed Central  Google Scholar 

  64. Duffy P, Masri BA, Garbuz D, Duncan CP. Evaluation of patients with pain following total hip replacement. Instr Course Lect. 2006;55:223–32. PMID: 16958458

    PubMed  Google Scholar 

  65. Henderson RA, Lachiewicz PF. Groin pain after replacement of the hip: aetiology, evaluation and treatment. J Bone Joint Surg Br. 2012;94(2):145–51. https://doi.org/10.1302/0301-620X.94B2.27736. PMID: 22323676

    Article  CAS  PubMed  Google Scholar 

  66. Classen T, Zaps D, Landgraeber S, Li X, Jäger M. Assessment and management of chronic pain in patients with stable total hip arthroplasty. Int Orthop. 2013;37(1):1–7. https://doi.org/10.1007/s00264-012-1711-6.

    Article  PubMed  Google Scholar 

  67. Ferrata P, Carta S, Fortina M, Scipio D, Riva A, Di Giacinto S. Painful hip arthroplasty: definition. Clin Cases Miner Bone Metab. 2011;8(2):19–22.

    PubMed  PubMed Central  Google Scholar 

  68. Brown TE, Larson B, Shen F, Moskal JT. Thigh pain after cementless total hip arthroplasty: evaluation and management. J Am Acad Orthop Surg. 2002;10(6):385–92. https://doi.org/10.5435/00124635-200211000-00002. PMID: 12470040

    Article  PubMed  Google Scholar 

  69. Ries C, Boese CK, Dietrich F, Miehlke W, Heisel C. Femoral stem subsidence in cementless total hip arthroplasty: a retrospective single-Centre study. Int Orthop. 2019;43(2):307–14. https://doi.org/10.1007/s00264-018-4020-x. Epub 2018 Jun 18. PMID: 29916001

    Article  PubMed  Google Scholar 

  70. Capone A, Congia S, Civinini R, Marongiu G. Periprosthetic fractures: epidemiology and current treatment. Clin Cases Miner Bone Metab. 2017;14(2):189–96. https://doi.org/10.11138/ccmbm/2017.14.1.189.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fukui K, Kaneuji A, Sugimori T, Ichiseki T, Matsumoto T, Hiejima Y. Clinical assessment after total hip arthroplasty using the Japanese Orthopaedic association hip-disease evaluation questionnaire. J Orthop. 2015;12(Suppl 1):S31–6. Published 2015 Feb 21. https://doi.org/10.1016/j.jor.2015.01.021.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Brown TD, Callaghan JJ. Impingement in Total hip replacement: mechanisms and consequences. Curr Orthop. 2008;22(6):376–91. https://doi.org/10.1016/j.cuor.2008.10.009.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Aalto K, Osterman K, Peltola H, Räsänen J. Changes in erythrocyte sedimentation rate and C-reactive protein after total hip arthroplasty. Clin Orthop Relat Res. 1984;184:118–20. PMID: 6705332

    Article  Google Scholar 

  74. Stathopoulos IP, Lampropoulou-Adamidou KI, Vlamis JA, Georgiades GP, Hartofilakidis GC. One-component revision in total hip arthroplasty: the fate of the retained component. J Arthroplast. 2014;29(10):2007–12. https://doi.org/10.1016/j.arth.2014.05.005. Epub 2014 May 15. PMID: 24939637

    Article  Google Scholar 

  75. Vanrusselt J, Vansevenant M, Vanderschueren G, Vanhoenacker F. Postoperative radiograph of the hip arthroplasty: what the radiologist should know. Insights Imaging. 2015;6(6):591–600. https://doi.org/10.1007/s13244-015-0438-5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mushtaq N, To K, Gooding C, Khan W. Radiological imaging evaluation of the failing total hip replacement. Front Surg. 2019;6:35. Published 2019 Jun 18. https://doi.org/10.3389/fsurg.2019.00035.

    Article  PubMed  PubMed Central  Google Scholar 

  77. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;121:20–32. PMID: 991504

    Google Scholar 

  78. Siwach R, Kadyan VS, Sangwan S, Gupta R. A retrospective study of total hip arthroplasty. Indian J Orthop. 2007;41(1):62–6. https://doi.org/10.4103/0019-5413.30528.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Baker P, Rankin K, Naisby S, Agni N, Brewster N, Holland J. Progressive radiolucent lines following the implantation of the cemented Rimfit acetabular component in total hip arthroplasty using the rimcutter technique: cause for concern? Bone Joint J. 2016;98-B(3):313–9. https://doi.org/10.1302/0301-620X.98B3.36613. PMID: 26920955

    Article  CAS  PubMed  Google Scholar 

  80. Mumme T, Reinartz P, Alfer J, Müller-Rath R, Buell U, Wirtz DC. Diagnostic values of positron emission tomography versus triple-phase bone scan in hip arthroplasty loosening. Arch Orthop Trauma Surg. 2005;125(5):322–9. https://doi.org/10.1007/s00402-005-0810-x. Epub 2005 Apr 9. PMID: 15821896.

    Article  CAS  PubMed  Google Scholar 

  81. Deshmukh S, Omar IM. Imaging of hip arthroplasties: Normal findings and hardware complications. Semin Musculoskelet Radiol. 2019;23(2):162–76. https://doi.org/10.1055/s-0038-1677467. Epub 2019 Mar 29. PMID: 30925629

    Article  PubMed  Google Scholar 

  82. Yamako G, Janssen D, Hanada S, Anijs T, Ochiai K, Totoribe K, Chosa E, Verdonschot N. Improving stress shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young’s modulus gradation. J Biomech. 2017;63:135–43. https://doi.org/10.1016/j.jbiomech.2017.08.017. Epub 2017 Aug 24. PMID: 28882332

    Article  PubMed  Google Scholar 

  83. Piao C, Wu D, Luo M, Ma H. Stress shielding effects of two prosthetic groups after total hip joint simulation replacement. J OrthopSurg Res. 2014;9:71. https://doi.org/10.1186/s13018-014-0071-x. PMID: 25174846; PMCID: PMC4237889

    Article  Google Scholar 

  84. D’Ambrosio A, Peduzzi L, Roche O, Bothorel H, Saffarini M, Bonnomet F. Influence of femoral morphology and canal fill ratio on early radiological and clinical outcomes of uncemented total hip arthroplasty using a fully coated stem. Bone Joint Res. 2020;9(4):182–91. https://doi.org/10.1302/2046-3758.94.BJR-2019-0149.R2. PMID: 32431809; PMCID: PMC7229336

    Article  PubMed  PubMed Central  Google Scholar 

  85. Saito M, Takahashi KA, Fujioka M, Ueshima K, Sakao K, Inoue S, Kubo T. Total hip arthroplasty using proximal porous coating stem with distal sleeve: mid-term outcome. J OrthopSurg (Hong Kong). 2009;17(1):36–41. https://doi.org/10.1177/230949900901700109. PMID: 19398791

    Article  CAS  Google Scholar 

  86. Anderl C, Mattiassich G, Ortmaier R, Steinmair M, Hochreiter J. Peri-acetabular bone remodelling after uncemented total hip arthroplasty with monoblock press-fit cups: an observational study. BMC Musculoskelet Disord. 2020;21(1):652. https://doi.org/10.1186/s12891-020-03675-7. PMID: 33023553; PMCID: PMC7539379

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ho KK, Beazley J, Parsons N, Costa ML, Foguet P. Narrowing of the femoral neck after resurfacing arthroplasty of the hip: a comparison of cemented and uncemented femoral components. Hip Int. 2010;20(4):542–6. https://doi.org/10.1177/112070001002000420. PMID: 21157762

    Article  PubMed  Google Scholar 

  88. Del Gaizo DJ, Kancherla V, Sporer SM, Paprosky WG. Tantalum augments for Paprosky IIIA defects remain stable at midterm followup. Clin Orthop Relat Res. 2012;470(2):395–401. https://doi.org/10.1007/s11999-011-2170-x. PMID: 22090355; PMCID: PMC3254742

    Article  PubMed  Google Scholar 

  89. Christer N Strömberg, Peter Herberts, Bo Palmertz&GöranGarellick (1996) Radiographic risk signs for loosening after cemented THA:61 loose stems and 23 loose sockets compared with 42 controls, ActaOrthopaedicaScandinavica, 67:1, 43–48, DOI: https://doi.org/10.3109/17453679608995607.

  90. Kiernan S, Geijer M, Sundberg M, Flivik G. Effect of symmetrical restoration for the migration of uncemented total hip arthroplasty: a randomized RSA study with 75 patients and 5-year follow-up. J OrthopSurg Res. 2020;15(1):225. https://doi.org/10.1186/s13018-020-01736-0. PMID: 32552711; PMCID: PMC7301498

    Article  Google Scholar 

  91. GarcíaJuárez JD, Bravo Bernabé PA, García Hernández A, Dávila Sheldon OE, Correa DG. Reconstrucción acetabular poraflojamientoencirugía de revisión de cadera no cementada. Unaserie de 18 casos [Acetabular reconstuction for loosening in uncemented hip revision surgery. A series of 18 cases]. ActaOrtop Mex. 2007;21(4):199–203. Spanish PMID: 17970560

    Google Scholar 

  92. Moore KD, Barrack RL, Sychterz CJ, Sawhney J, Yang AM, Engh CA. The effect of weight-bearing on the radiographic measurement of the position of the femoral head after total hip arthroplasty. J Bone Joint Surg Am. 2000;82(1):62–9. PMID: 10653085

    Article  CAS  PubMed  Google Scholar 

  93. Lutz B, Faschingbauer M, Bieger R, Reichel H, Kappe T. AzetabuläreOsteolysenbeiHüfttotalendoprothese—wannkann die Pfannebelassenwerden? [Acetabular osteolysis in Total hip replacement—when to retain the cup?]. Z OrthopUnfall. 2016;154(4):377-384. i: https://doi.org/10.1055/s-0042-105212. (Germanica) Epub 2016 Jun 1. PMID: 27249047.

  94. Bolognesi MP, Ledford CK. Metal-on-metal total hip arthroplasty: patient evaluation and treatment. J Am AcadOrthop Surg. 2015;23(12):724–31. https://doi.org/10.5435/JAAOS-D-14-00183. Epub 2015 Oct 22. PMID: 26493972

    Article  Google Scholar 

  95. Preininger B, Haschke F, Perka C. Diagnostik und Therapie der luxation nachHüfttotalprothesenimplantation [Diagnostics and therapy of luxation after total hip arthroplasty]. Orthopade. 2014;43(1):54–63. https://doi.org/10.1007/s00132-013-2125-x. German. PMID: 24384890

    Article  CAS  PubMed  Google Scholar 

  96. Apostu D, Lucaciu O, Berce C, Lucaciu D, Cosma D. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review. J Int Med Res. 2018;46(6):2104–2119. doi: 10.1177/0300060517732697. Epub 2017 Nov 3. PMID: 29098919; PMCID: PMC6023061.

    Google Scholar 

  97. Bistolfi A, Linari A, Aprato A, Fusini F, Cravero E, Papotti M, Ferracini R, Massè A. Histological evaluation of acetabular bone quality during revision hip arthroplasty. Hip Int. 2020;30(2_suppl):66–71. https://doi.org/10.1177/1120700020966803. PMID: 33267687

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, C.S., Anand, S. (2023). Modes of Failure in Total Hip Arthroplasty. In: Sharma, M. (eds) Hip Arthroplasty. Springer, Singapore. https://doi.org/10.1007/978-981-99-5517-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5517-6_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5516-9

  • Online ISBN: 978-981-99-5517-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics